

XML(eXtensible Markup Language)

배재대학교 컴퓨터공학과 정 회 경 <u>hkjung@mail.pcu.ac.kr</u> <u>http://mie.pcu.ac.kr</u>

- W3C Activities
- XML Overview
- DOM/SAX
- Style
 - XSL
 - XSLT/XPath
- Schema
- Namespace
- Application
 - MathML, SVG, VoiceXML, P3P, WML, XrML

W3C Activities

Architecture

DOM

- platform and language neutral interface
- allows programs and scripts to dynamically access and update the content, structure and style of Web documents.
- DOM Level 1 1 Oct 1998
- DOM Level 2 13 Nov 2000
- DOM Level 3 9 April 2002 (WD)

Jigsaw

- W3C's leading-edge Web server platform
- providing an open source HTTP/1.1 implementation
- 8 April 2002 released Jigsaw 2.2.1

URI

- may refer to documents, resources, services, people, and, indirectly, to anything
- Web's naming and addressing technology
- URIs, URLs, and URNs 1.0 21 September 2001(Note)

Architecture

XML

- XML 1.0 10 Feb 1998
- XML 1.1 25 April 2002 (WD)

Web Services

- builds a set of technologies that allow application-toapplication interactions on the Web
 - XML-based protocol for communication, a description language for describing interfaces to services
- formed by expanding the former XML Protocol Activity in January 2002
- Web Services Architecture Requirements 29 April 2002(WD)
- Web Services Description Language (WSDL)Version 1.2 1
 July 2002(editor copy)

Document Formats

- Amaya
 - W3C's own versatile editor/browser
 - Amaya 6.28 July 2002
- Graphics
 - Portable Network Graphics (PNG)-1 Oct 1996
 - widely supported replacement for GIF
 - WebCGM -21 January 1999
 - for industrial technical drawings
 - Scalable Vector Graphics (SVG)
 - language for describing two-dimensional vector and mixed vector/raster graphics in XML.
 - SVG 1.1 30 April 2002
- HTML
 - HTML 4.1 24 Dec 1999

Document Formats

Internationalization

- Modern business, research, and interpersonal communication is conducted in many writing systems and languages
- Internationalization Activity tries to make sure that Web technology meets the needs of the global community
- Character Model for the World Wide Web 1.0 30 April 2002(WD)
- Unicode in XML and other Markup Languages 18 February 2002(Note)

Math

- primary focus is the MathML language
- which is intended to facilitate the use and re-use of mathematical and scientific content on the Web, and for other applications
- MathML 2.0 21 Feb 2001

Document Formats

Style

- describe how documents are presented on screens, in print, or perhaps how they are pronounced
- CSS Level 1 17 Dec 1997
- CSS Level 2 12 May 1998
- XSL 1.0 15 Oct 2001
- XSLT 2.0 14 Feb 2001(WD)
- Xpath 2.0 14 Feb 2001(WD)

Device Independence

- significant efforts to integrate Web technologies into various devices
- Web services are becoming accessible from a wide range of devices including cellular phones, TV, digital cameras and in-car computers
- working to ensure seamless Web access with various kinds of devices
- CC/PP Structure 15 March 2001
- CC/PP Requirement and Architecture 21 July 2001
- CC/PP Terminology and Abbreviations— 21 July 2001

Interaction

Multimodal Interaction

- developing markup specifications for synchronization across multiple modalities and devices
- Multimodal Interaction Activity is extending the Web user interface
- Current Patent Practice 24 January 2002(Note)

Synchronized Multimedia

- focuses on the design of a language for scheduling multimedia presentations where audio, video, text and graphics are combined in real-time
- SMIL 2.0 7 Aug 2001

Voice Browser

- expand access to the Web to allow people to interact with Web sites via spoken commands, and listening to prerecorded speech, music and synthetic speech
- VoiceXML 2.0 24 April 2002(WD)
- Semantic Interpretation for Speech Recognition 16 November 2001(WD)
- Speech Synthesis Markup Language Specification 5 April 2002(WD)
- Speech Recognition Grammar Specification 1.0 26 June 2002(CR)

Technology and Society

XML Encryption

- Encryption renders data (plain-text) confidential (cipher-text) such that it can be safely stored or transmitted and only the intended recipients can restore the data to its original form
- XML Encryption Requirements 04 March 2002(Note)
- XML Encryption Syntax and Processing 04 March 2002(CR)
- Decryption Transform for XML Signature 04 March 2002(CR)

XML Key Management

- developing an XML application that allows a simple client to obtain key information (values, certificates, management or trust data) from a Web service
- XML Key Management Specification (XKMS 2.0) 18 March 2002(WD)

Technology and Society

- XML Signature
 - Digital signatures provide integrity, signature assurance and nonrepudiatability over Web data
 - XML-Signature Requirements −14 Oct 1999(WD)
 - XML-Signature Syntax and Processing 12 February 2002
 - Exclusive XML Canonicalization 1.0 24 May 2002(PR)

Privacy

- Web is being used for business and other applications where sensitive and personal information may be exchanged via the Internet
- *P3P 1.0 16 April 2002*
- A P3P Preference Exchange Language 1.0 (APPEL1.0) 15 April 2002(WD)

Semantic Web

- the idea of data on the Web defined and linked in a way that it can be used by machines for automation, integration and reuse
- RDF Model and Syntax Specification 22 February 1999
- RDF Vocabulary Description Language 1.0: RDF Schema 30 April 2002(WD)

Web Accessibility Initiative

- WAI International Program Office
 - enables partnering and coordination among the many stakeholders in Web accessibility: industry, disability organizations, government, and research organizations
- WAI Technical Activity
 - conducts WAI technical work including review of technologies under development by W3C Working Groups
 - Web Content Accessibility Guidelines 1.0 5 May 1999
 - Web Content Accessibility Guidelines 2.0 24 August 2001(WD)

XML Overview

What is XML?

- A syntax for "encoding" text-based data (words, phrases, numbers, ...)
- A text-based syntax. XML is written using printable characters (no explicit binary data)
- Extensible. XML lets you define your own tags (essentially data types), within the constraints of the syntax rules
- Universal format. The syntax rules ensure that all XML processing software MUST identically handle a given piece of XML data.

- Simple (like HTML)
 - But not quite so simple
 - Strict syntax rules, to eliminate syntax errors
 - syntax defines structure (hierarchically), and names structural parts (element names) -- it is self-describing data
- Extensible (unlike HTML; vocabulary is not fixed)
 - Can create your own language of tags/elements
 - Strict syntax ensures that custom tags can be reliably processed
- Designed for a distributed environment (like HTML)
 - Can have data all over the place: can retrieve and use it reliably
- Can mix different data types together(unlike HTML)
 - Can mix one set of tags with another set: resulting data can still be reliably processed

XML Components

Elements

- delimited by angle brackets
- identify the nature of the content they surround
- Some elements may be empty : <tag-name/>
- it begins with a start-tag, <element>, and ends with an endtag, </element>

Attributes

- name-value pairs that occur inside tags after the element name
- all attribute values must be quoted
- example : <div class="preface">
- attribute types
 - CDATA, ID, IDREF or IDREFS, ENTITY or ENTITIES, MTOKEN or NMTOKENS, a list of names
- default values
 - #REQUIRED, #IMPLIED, "value", #FIXED "value"

Entity References

- entities:
 - used to represent special characters
 - used refer to often repeated or varying text
 - must have a unique name
 - internal entities, external entities, parameter entities
- Entity references
 - begin with the ampersand and end with a semicolon
 - "AT & T, Inc." : AT & amp; T, Inc.
- Character references
 - decimal references: ℞
 - hexadecimal references: ℞

XML Components

Comments

- begin with <!-- and end with -->
- can contain any data except the literal string "--"
- are not part of the textual content of an XML document
 - An XML processor is not required to pass them along to an application

Processing Instructions

- provide information to an application
- <?name pidata?>
- name : PI target, identifies the PI to the application
- pidata : optional
- PI names beginning with XML are reserved for XML standardization
- example : <?XML version= "1.0" encoding='UTF-8'?>

- CDATA Sections
 - CDATA section instructs the parser to ignore most markup characters
 - example : source code listing

```
<![CDATA[
*p = &q;
b = (i <= 3);
]]>
```

- all character data is passed directly to the application
- comments are not recognized in a CDATA section
 - If present, the literal text <!--comment--> will be passed directly to the application

XML Document

Well-formed Documents

- document instance must conform to the grammar of XML documents
- looks right, but logical structure is not validated
- need to have a single outermost element (root, document element)

Valid Documents

- contains a proper document type declaration
- the document obeys the constraints of that declaration

A Well-formed XML Document Ex.

```
Binary encoding used in file
       <?xml version="1.0" encoding="iso-8859-1"?>
       <partorders</pre>
              xmlns="http://myco.org/Spec/partorders">
         <order ref="x23-2112-2342"</pre>
Declaration
                 date="25aug1999-12:34:23h">
("this is XML")
              <desc> Gold sprockel grommets,
                     with matching hamster
              </desc>
              <part number="23-23221-a12" />
              <quantity units="gross"> 12 </quantity>
              <deliveryDate date="27aug1999-12:00h" />
         </order>
         <order ref="x23-2112-2342"</pre>
                  date="25aug1999-12:34:23h">
               . . Order something else . . .
         </order>
       </partorders>
```


A Valid XML Document Ex.

attribute of this quantity element

```
element ?xml version = "1.0" encoding = "iso - 8859 - 1"?>

**COCTYPE partorders SYSTEM "partorder.dtd">
    <sup>_</sup>><partorders
                 xmlns="http://myco.org/Spec/partorders" >
        < order ref="x23-2112-2342"
                 date="25aug1999-12:34:23h">
              cdesc> Gold sprockel/grommets,
                     with matching hamster
           </desc>
          <part number="23-23221-a12" />
           <quantity units="gross"> 12 </quantity>
          <deliveryDate date="27aug1999-12:00h" />
       -
        <order ref="x23-2112-2342"</pre>
                  date="25aug1999-12:34:23h">
                  . Order something else
        </order>
                              Hierarchical, structured information
```

</partorders>

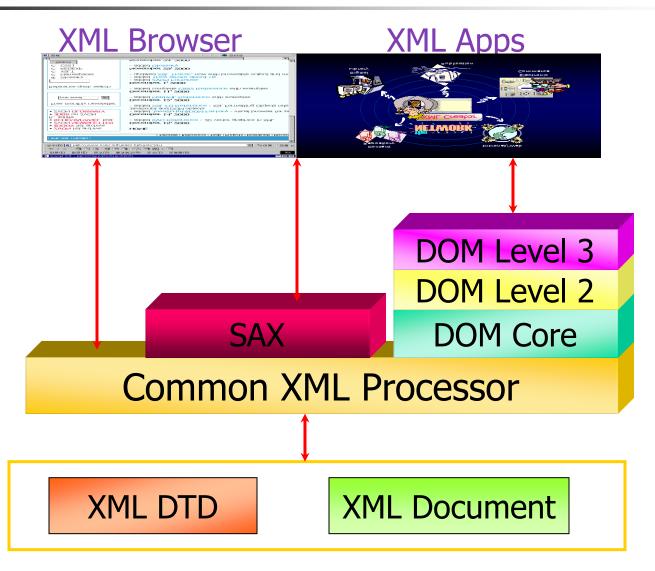
Defining Specific Language

- Two ways of doing so:
 - XML Document Type Declaration (DTD) -- Part of core XML spec.
 - XML Schema -- New XML specification (2001), stronger constraints on XML documents.
- Adding dialect specifications implies two classes of XML data:
 - Well-formed
 - An XML document that is syntactically correct
 - Valid
 - An XML document that is both well-formed and consistent with a specific DTD (or Schema)
- Most current dialects defined using DTDs.
- Schemas often used for type validation.

XML Processing

- DOM
 - An object-oriented interface
 - Status
 - DOM Level 1 1 Oct 1998
 - DOM Level 2 13 Nov 2000
 - DOM Level 3 9 April 2002 (WD)
- SAX: Simple API for XML
 - http://www.megginson.com/SAX/index.html
 - An event-based interface

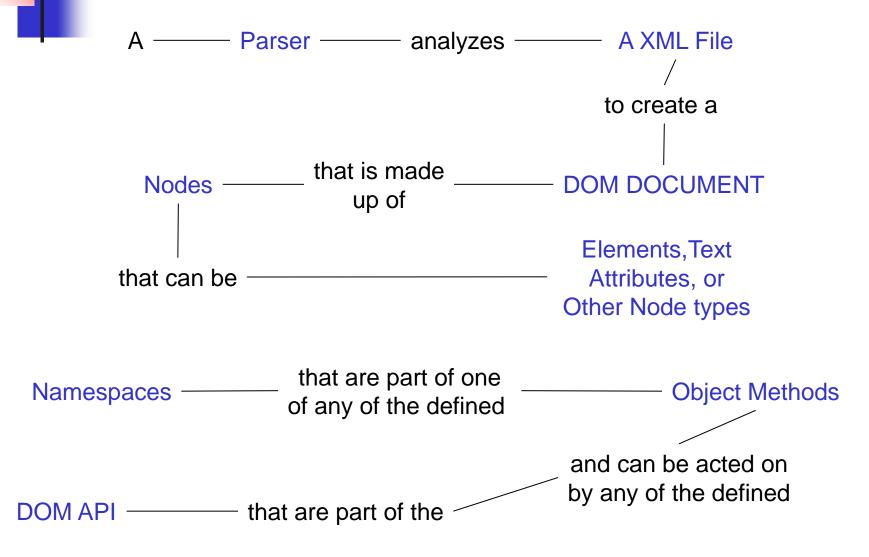
XML Processing


- JDOM: Java Document Object Model
 - http://www.jdom.org
 - A Java-specific object-oriented interface
 - Advantages
 - Very useful for dynamic modification of the tree
 - Useful for querying
 - Much nicer Object Oriented programming interface than DOM
 - Disadvantages
 - Can be slow (make that tree...), and can take up lots of memory
 - New, and not entirely cooked (but close)
 - Only works with Java, and not (yet) part of Core Java standard

DOM/SAX

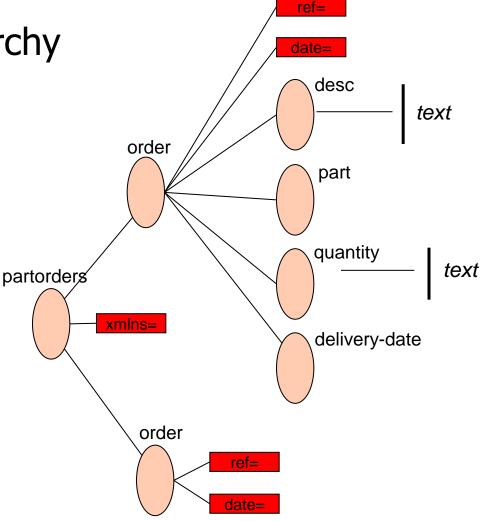
XML API role

- Two types: tree-based and event-based
 - A tree-based API (eg., DOM) compiles an XML document into an internal tree structure
 - Uses much physical memory
 - An event-based API (eg., SAX) reports parsing events (such as the start and end of elements) directly to the application


What's DOM

- platform and language neutral interface
- allows programs and scripts to dynamically access and update the content, structure and style of Web documents.
- An object-oriented interface
- Status
 - DOM Level 1 1 Oct 1998
 - DOM Level 2 13 Nov 2000
 - DOM Level 3 9 April 2002 (WD)

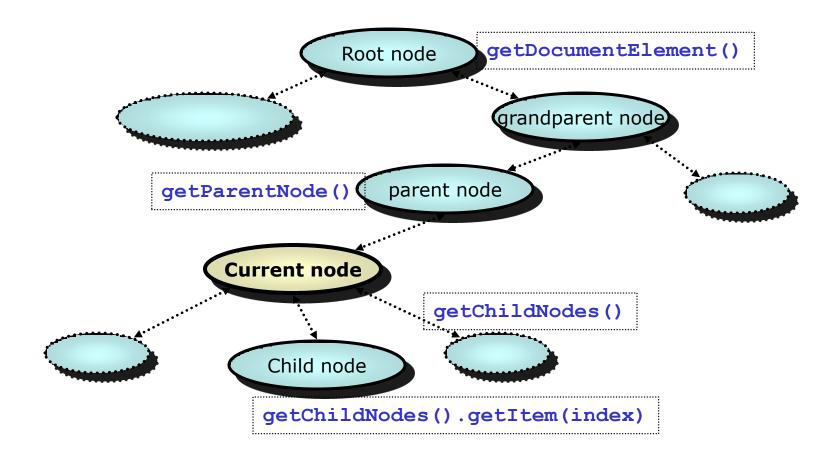
DOM roadmap



DOM Data Model

Creating the hierarchy

```
<partorders</pre>
  xmlns="...">
  <order date="..."</pre>
          ref="...">
    <desc> ..text.
    </desc>
    <part />
    <quantity />
    <delivery-date />
  </order>
  <order ref=".." .../>
</partorders>
```



DOM properties

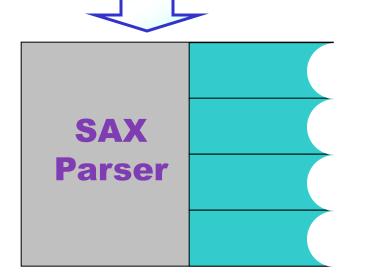
async	nextSibling	paser Error
attribute	node Name	previous Sibling
child Nodes	node Type	ready State
doctype	node Value	url
document Element	ondataavailable	validate OnParse
first Child	onreadystatechange	xml
Implementation	owner Document	
last Child	parent Node	

DOM Node & API Relation

- Is a standard API for event-driven processing of XML data
 - Allowing parsers to deliver information to applications in digestible chunks
- Developed by members of the XML-DEV mailing list
- First version of spec released in May 1998
- Large number of SAX compliant parsers developed in a number of languages
 - Most are freely available
 - Java ones are usually more mature and fastest to implement new specifications

SAX mechanism

- A SAX parser generates events
 - At the start and end of a document
 - At the start and end of an element
 - When it finds characters inside an element
 - Upon encountering errors
 - Upon encountering negligible whitespace
 - and at several other points
- Uses callback mechanism to notify application
- Write Java code that handles each event, and user decides what to do with the information got from the parser



SAX Structure

Parser Factory

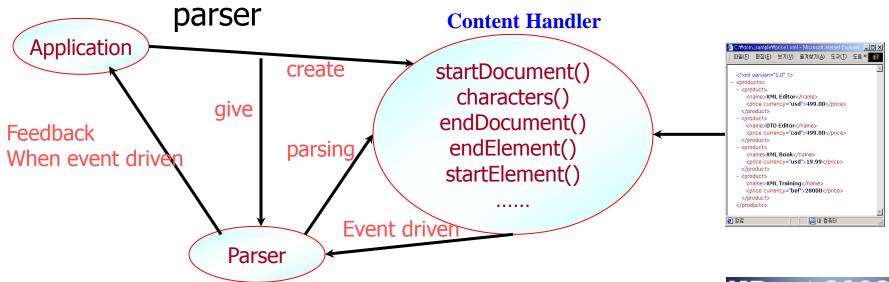
Document Handler

Error Handler

DTD Event Handler

Entity Resolver

SAX interface

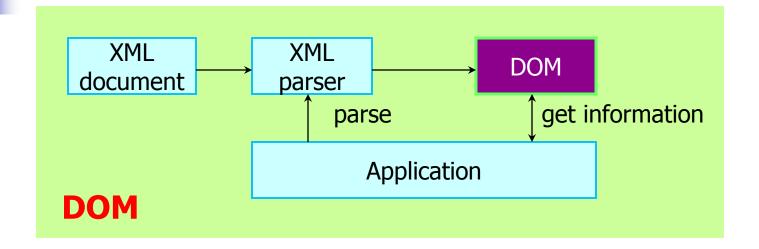

- The Parser
 - The parser developer creates a class that actually parses the XML document or data stream
 - The parser reads the XML source data
 - Stops reading when encounters a meaningful object
 - Sends the information to the main application by calling an appropriate method
 - Waits for this method to return before continuing

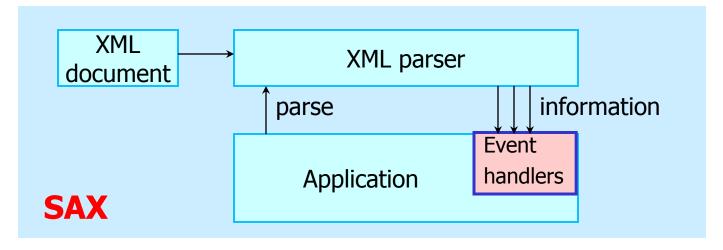
- The Document Handler
 - Interface to receive basic markup events from the parser
 - the application developer must create a class that implements the DocumentHandler interface
 - Usually implemented by class that activates the

- The AttributeList
 - Have a wrapper object for all attribute details
 - Cannot distinguish attributes defined explicitly from those specified in DTD
- The ErrorHandler
 - When the application needs to be informed of warnings and errors
- The Locator
 - Associates a SAX event with a document location
 - can tell the entity, line number and character number of the warning or error
- The DTD Handler
 - Provides callback methods to receive notification of DTD events
 - A mechanism to inform an application about any binary entity that the parser encounters

SAX interface

- The EntityResolver
 - The application is not aware of the physical structure of the XML data
 - The parser contains an entity manager that hides the complexity from the application which sees the data as a single stream
 - Can intercept references to entities by implementing the EntityResolver interface




- Supports for namespaces, for filter chains, and for querying and setting features and properties in the parser
- Public-domain software from grass-roots effort (XML-DEV mailing list), not owned by anyone, nor associated with any consortium
- Supported/to be supported by most major parsers

DOM vs. SAX

Advantages/ Disadvantages

DOM

Advantages

- Very useful for dynamic modification of, access to the tree
- Useful for querying (I.e. looking for data) that depends on the tree structure [element.childNode("2").getAttributeValue("boobie")]
- Same interface for many programming languages (C++, Java, ...)

Disadvantages

- Can be slow (needs to produce the tree), and can take up lots of memory
- DOM programming interface is a bit awkward, not terribly object oriented

Advantages/ Disadvantages

SAX

- Advantages
 - Simple to use
 - Very fast
 - Low memory use (doesn't read an XML document entirely into memory)
- Disadvantages
 - Not doing very much for you -- you have to do everything yourself
 - Not useful if you have to dynamically modify the document once it's in memory (since you'll have to do all the work to put it in memory yourself!)

Style

Using CSS with XML

- Why use CSS with XML?
 - Easy to learn and implement
 - Already at work in the Web community
 - Works with HTML
- CSS does have a downside
 - Can't generate text
 - Can't grab an item from one place and use it again in another place
 - Isn't programming language
 - Use a simple box-oriented formatting model

Immediate Solutions

- Duck to water CSS to XML
- Selectors and property definitions
- Show you everything you need to know to create CSS style rules and style sheets and link them to existing documents

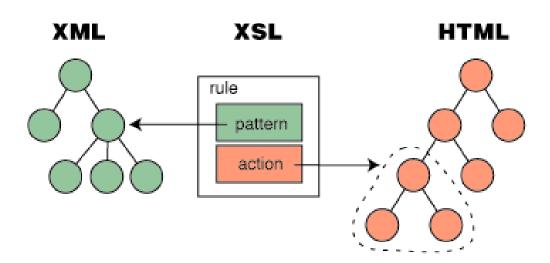
Example

What is XSL?

- XML provide information about the structure of a document
- XSL create style sheets for XML document
 - Formatting information
 - How to format the element, contents for viewing by user (ex, web browser)
- The following design
 - Over the internet, XML syntax, subset of DSSSL
 - Mapping of CSS into XSL, ease to create

Why Stylesheet?

- Reuse
 - the same content can look different in different contexts
- Multiple output formats
 - different media (paper, online), different sizes (manuals, reports), different classes of output devices (workstations, hand-held devices)
- Styles tailored to the reader's preference
 - print size, color, simplified layout for audio readers
- Standardized styles
 - corporate stylesheets can be applied to the content at any time
- Freedom from style issues for content authors
 - technical writers needn't be concerned with layout issues because the correct style can be applied later



A construction rule

- A construction rule describes how a particular element is to be transformed into displayable output
- The construction rule consists of two parts:
 - a pattern identifying a type of XML source element
 - an action describing what to do with elements that match this pattern.

A construction rule

Patterns

- Choose which elements to apply which style rules to.
 - Have a target-element (matched in document).
 - Supply a type attribute (matched in element).
- Actions.
 - Objects to create in the output tree
 - Directly create flow objects, add literal text

Defining XSL constructs

- XSL documents
 - An XML document
 - Must adhere to all of XML's syntactical rule
 - Using a validating XML Parser

```
<XSL>
<IMPORT HREF="/style/main-style.xsl" />
<HEADER>
Header text to be affected by the header macro
</HEADER>
...
<IMPORT>
<DEFINE-MACRO>
<DEFINE-SCRIPT
<ID> and <CLASS>
</XSL>
```

<?XML-STYLESHEET HREF="/style/main-style.xsl" TYPE="TEXT/XSL"?>

Define

- As XML Path Language (Xpath), with XML separate language spec.
- Question notation that do XML documents' elements and text to do filtering with addressing.
- Declarative expression to be not procedural notation

Xpath's action principle

```
<booklist>
                                     Document Root
   <book>
      <title>Xpath</title>
                                               booklist
      <writer>HK Jubg
      <publish>MIE</publish>
                                                      book
   </book>
                                                            title
</booklist>
                                                                Xpath
                                                           writer
                                                               HK Jung
<xsl:template match = "/booklist/book/title">
                                                          publish
                                                                 MIE
```


Location Expression

- / : Child Operator of present node return.
- // : In Document to Recursive Descent Operator all relevant node returns.
- :current context
- * :Regardless of element name by Wildcard all node conversions
- @ : Attribute's attribute node return.
- @*: Wildcard that replace all attribute nodes of node.
- : As Namespace Operator, Namespace's Prefix return.
- (): Group Operator
- []: filters

Finding Node

- General method to get node that want at node
- expression: "/"
- Appoint position using relative pass from present node using "/" that is child operator mainly.
- Form : <xsl:template match="00/00/00">
- Finding writer node

```
<xsl:template match ="booklist">
    <xsl:value-of select ="./book/writer"/>
    </xsl:template>
```


Finding Attribute

- Expression that find Attribute at node
- Expression: "@"
- Form : <xsl:template match="/@attribute_name">

Finding books attribute

```
<xsl:template match ="book">
  <xsl:value-of select ="./@catalogue"/>
  </xsl:template>
```


Recursive Descent Operator

- In element name regardless of Context Node's position path appointment
- expression: "//"
- "//" Operator replaces node that escape relative route and have name of appropriate element been in what position of present document.

```
<xsl:template match ="booklist">
  <xsl:value-of select ="//title"/>
  </xsl:template>
```


Boolean, Compression Expression

- and : Logic operator and
- or : Logic operator or
- Not(): Logic operator conversion
- = : Equal operator
- != : Not equal
- Comparison operator
- > : Comparison operator
- >= : Comparison operator
- : Set of two nodes (Union)

- Child::Node
 - All elements that is children of node selection
- descendant-or-self::Node or descendant::Node
 - All descendant node of context node and all <Descendant> elements of context node selection
- attribute::attribute_name
 - Attribute of node selection
- parent::Node, ancestor::Node
 - parent node of node, ancestor node of node selection
- following::Node following-sibling::Node
 - All nodes that come in front of node(only silbling node

Node Function

- Name()
 - When wish to know name of node
- Node()
 - Is function that is not used hardly to replace node confidence.
- Processing-instruction()
 - Processing instruction return
- Text()
 - PCDATA of node confidence return .Children's PCDATA does not replace.
- Comment()
 - Comment return

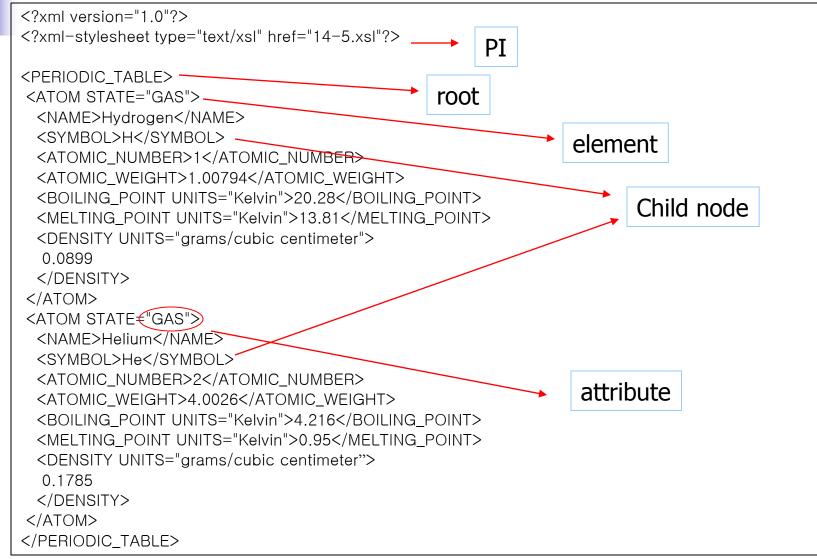
Location Function

- Position()
 - Function that replace position in document of node from node-set that get.
- Last()
 - Replace last node most node-set.
- count()
 - Replace number of replaced node-set.

Number / Boolean Function

- number()
 - Function that change by number style that text style is PCDATA.
- Boolean()
 - number and 0, false. If number is value except 0, true.
 - string and length is longer than 0, true
 - node-set and is not empty, true
- not()
 - In case confirm reverse value of replaced value

XSL Transformations Concept


- 7 Type of Tree
 - Root : Root of tree(Include the Root element, PI, child element)
 - Elements: Include the root, child, descendant
 - text : Character Data(Character in CDATA paragraph inside <(<))</p>
 - Attributes : Set of attribute node
 - Namespaces: Thing to divide element or attribute
 Have URI value.
 - Processing Instruction : Description for instruction
 - Comments : node to explanation

XSLT example

XSL templates

- Template rule is important part of XSL style sheet
- xsl:template element
 - Have the "match" attribute: node identification
- xsl:apply-templates element : Use to handle child node

attribute

```
Template rule
```

```
<xsl:template match = "atom" >
  <xsl:apply-templates select = "name"/>
</xsl:template>
```


XPath in XSLT

- Though embody XSLT, in template path appointment grammar that approach exactly in pattern
- Do so that can get correct slice of necessary information specifying address on XML Document's sections.

```
XML Source tree template
```

```
<person>
     <name>Mr .Hong</name>
     <sex>man</sex>
     <add>Seoul</add>
</person>
```

```
<xsl:template match = "person/name">
    Name:<xsl:value-fo select="."/>
<xsl:template>
```

Result tree

XSLT Patterns for matching Nodes

- Pattern : Set of condition that relate in node
- Root Node : The Root Node
- Element Names : Each name of all elements
- / : List element hierarchically.
- // : Descendants element selection
 - //from-descendants-of-self

XSLT Patterns for matching Nodes

- id(): Unique id element value:"
 - <xsl:template math="id('e47')">
- @ : Attribute selection of context node
- comment(): Comment node processing
- pi(): PI node processing
- text(): All text node processing
- | : or , Processing that several element by sequence

XSLT Expressions for Selecting Nodes

- Expression Types
 - Node Sets: List of node from input document
 - Last(): Last node in context node set
 - Position(): First position of context node list inside
 - Count(): Number of node from node set

<xsl:value-of select="position()"/>

XSLT Expressions for Selecting Nodes

- Booleans : true or false
 - Boolean Rule
 - A number is false if it's zero or NULL true
 - An empty node set is false; all other node sets are true
 - An empty result fragment is false; all other result fragments are true
 - A zero length string is false:all other strings are true
 - <, >, <=, >=, or, and operator use
 - Return Boolean Value.: true(), false(), lang(code)

XSLT Expressions for Selecting Nodes

Numbers

- Mathematical operator offer: +, -, *, div
- Function that number does arithmetic
 - floor(): Maximum of integer greater than parameter
 - ceiling(): Minimum of integer less than parameter
 - round(): With parameter almost similar integer
 - sum(): Total sum of node value in parameter of node set
- Binary operator
 - Mod : Remainder about that divide two numbers
 - Quo: Integer of share about that divide two numbers

<xsl:value-of select="round(ATOMA - ATOMB)"/>

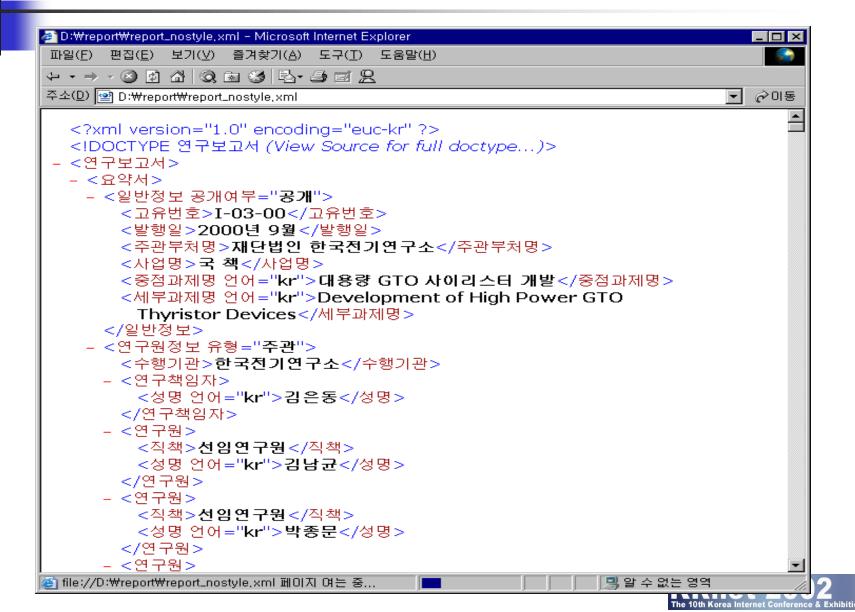
XSLT Expressions for Selecting Nodes

Strings

- Unicode literal contiguously composition
- Rule by String() function
 - Node set is conversion by attaching node value in set
- Function
 - starts-with(main_string, prefix_string)
 - contains(containing_string, contained_string)
 - substring-before(string, marker-string)
 - substring-after(string, marker-string)
 - normalize(string)
 - translate(string, replaced_text, replacement_text)
 - concat(string1, string2, ...)
 - format-number(number, format-string, locale-string)

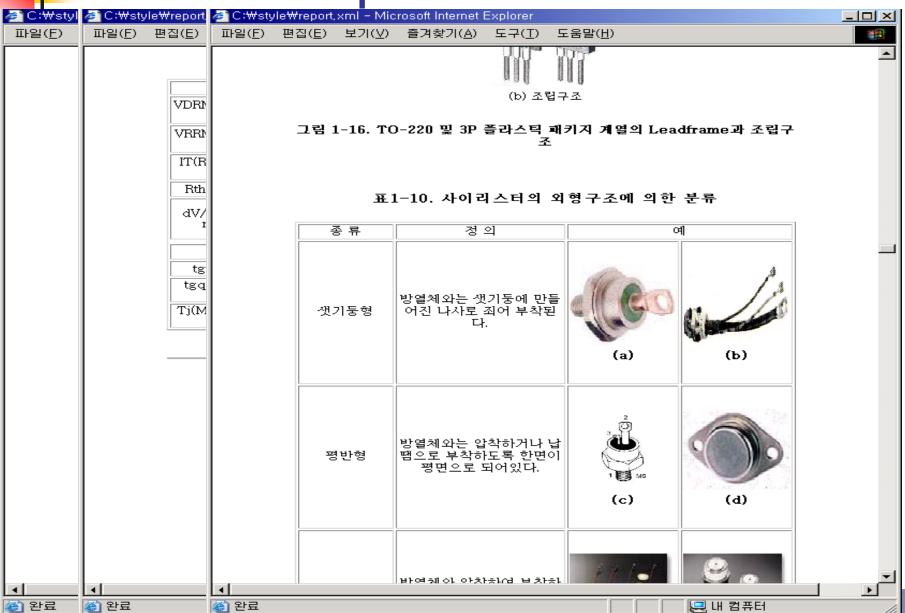
XSLT Making Choices

- two commands of conditionality processing
 - xsl:if
 - Simple condition command offer
 - Have one attribute
 - xsl:choose
 - When there is plural possibility, one selection
 - xsl:when child element offer
- Several StyleSheet union
 - xsl:import
 - inclusion with URI value of stylesheet(inclusion with other child element)
 - xsl:include
 - Offer with URI of other Stylesheet, top level element


The 10th Korea Internet Conference & Exhibi

XSL Example

report.xml ☑ EditPlus - [D:₩과제₩과제₩kordic₩2001년₩2002년0311₩전체요약서₩전체요약서,xml] Marker EditPlus - [D:₩과제₩과제₩kordic₩2001년₩style₩report0318,xsl] 편집(E) 보기(<u>V</u>) 검색(S) 문서(D) 프로젝트(P) 도구(T) report.xsl B C X KO CH <!ENTITY a_kriss_ <!ENTITY a_kriss_ <xsl:value-of select="."/> <!ENTITY kriss_fig <!ENTITY kriss_fig </xsl:element> <!ENTITY a_kriss_ </div> <!ENTITY kriss_fig </xsl:when> <!ENTITY kriss_fig </xsl:choose> <!ENTITY a_kriss_ </xsl:for-each> <!ENTITY a_kriss_ </xsl:variable> <!ENTITY a_kriss_ <!ENTITY kriss_fig</pre> <!-- 그림목차 (List of Figure) --> <!ENTITY a_kriss_ <xsl:variable name = "LOF"> <xsl:if test="//그림그룹"> 7연 구보고서> <전체요약서> <일반정보 공개여투 <과제코드>1-03-00 <div style="text-align: center; padding-top:20pt; font-weight; bold; font-size: 12pt"> 그림목차 (List of Figure) </div> </xsliif> 유번호>CE001-<xsl:for-each select="//그림그룹"> <xsl:choose> <xsl:when test="그림내용"> <div style="text-align: left padding-left:40pt padding-top:10pt font-weight: bold: font-size: 11pt"> <xsl:element_name="a"> <xsl:attribute name="href"> <xsl:text>#</xsl:text><xsl:value-of select="그림내용/@id"/> </xsl:attribute> <xsl:value-of select="제목"/> </xsl:element> </div> </xsl:when> <xsl:when test="서브그림"> <div style="text-align; left; padding-left;40pt; padding-top:10pt; font-weight; bold; font-size; 11pt"> <xsl:element name="a"> <xsl:attribute name="href"> <xsl:text>#</xsl:text><xsl:value-of select="제목<u>/@id</u>"/> </xsl:attribute> ㅎㅎ 건너="KI /연구책임자> 연구원> 진채>연구의> <xsl:value-of select="제목"/> [연그의기/지표 </xsl:element> ູ 요약서.xml 도움말을 보려면 <F1> 요약서.xml ◆전체요약서,xml report0318.xsl 도움말을 보려면 <F1> 키를 누르십시오. 줄 22 칸 1 1203 PC 76


XSL Example

The 10th Korea Internet Conference & Exhibition

XSL Example

Schema

Limitations of XML DTD

- DTD not extensible
- Only one DTD per document
- Limited support of namespaces
- Weak data typing
- No inheritance
- Document can override an external DTD
- Non-XML syntax
- No (direct) DOM support
- Limited tools

Something better?

- "Schema", originated in database, means the organization or structure of a database
 - Naming of data items
 - Constraints to be applied to data (eg., data typing)
 - Relationships between data items
- XML-Data Reduced (XDR) Microsoft's non-W3C-compliant implementation

Schema Parts

- XML Schema Part 0: Primer
 - provides an easily approachable description of the XML Schema definition language
- XML Schema Part 1: Structures
 - define the nature of XML schemas and their component parts
 - provide an inventory of XML markup constructs with which to represent schemas
 - define the application of schemas to XML documents.
- XML Schema Part 2: Datatypes
 - extensible datatype system for XML which could be incorporated into XML processors

Schema vs. DTD's

- DTD is weak in data typing
 - <quantity>hello</quantity>
- Schemas are XML documents which can be manipulated like other XML documents
 - Valid schemas conform to DTD's
- Schemas have more detailed and robust content models
- Schemas are extensible
- Dynamic schemas can be modified at runtime

XML Schema Features

- Rich datatypes
 - integer, float, date, time, boolean, ...
- User-defined types
- Extendable types
- Open, closed or refinable content models
- Grouping
- Namespace support


```
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="person">
  <xsd:complexType>
   <xsd:sequence>
     <xsd:element ref="name"/>
     <xsd:element ref="age" minOccurs='0' maxOccurs='1'/>
     <xsd:element ref="hobby" minOccurs='1' maxOccurs='unbounded'/>
   </xsd:sequence>
  </xsd:complexType>
 </xsd:element>
 <xsd:element name="name" type="string"/>
 <xsd:element name="age" type="integer"/>
 <xsd:element name="hobby" type="string"/>
</xsd:schema>
```

Equivalent DTD

```
<!ELEMENT person (name, age?,
         hobby+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT hobby (#PCDATA)>
```


XML Document

NameSpace

Namespace Declarations

- Must declare preferentially to use Namespace
- Declare by Element's attribute. May declare in Root element and may do at child node
- Attribute name beginning xmlns or xmlns:.
- In case use xmlns: , name that come next is prefix and should be involved with URI

<x xmlns:edi="http://mie.pcu.ac.kr/namespace>
prefix
URI

 Is begun by character or 'underline(_)' and string including character, number, 'dot(.)', 'hyphen(-)', 'underline(_)' can come

right	xmlns:_my-namespace-name	
	xmlns:한글_namespace	
	xmlns:edi.건설	
	xmlns:edi.유통	
wrong	xmlns: my	(space)
	xmlns:911rescue	(number)
	xmlns:book:kr	(:)
	xmlns:book kr	(space)

Default namespace

- Because there is no Prefix, is applied on child node whole without can apply namespace in particular element.
- Default namespace is not applied to attribute.

Multi namespace declarations

- Can declare compound namespace in element
- Child element applies necessary namespace selectively

Application

Presentation

- stuff people read or look at
- Presentational Language(for people/applications)
 - MathML -- for mathematics
 - WML -- Wireless WAP-phones
 - SVG -- for graphics
 - VoiceXML -- voice interfaces
 - SMIL -- for multimedia (RealPlayer)
 - XHTML -- new HTML
- metadata
 - for describing things; for use by other software
 - RDF -- Resource Description Framework

Utilities

- generic XML tools -- XSLT, Schemas,...
 - XSLT -- transform one XML document into another.
 - Schemas -- Define validation rules for a specific type of XML document
 - Can define hierarchical nesting rules for elements, allowed attributes and attribute status (like DTDs)
 - Can define stronger typing constraints on element content, attributes (e.g., Integers, Integer ranges, reals, real ranges, strings, tokens, etc.)

S/W development

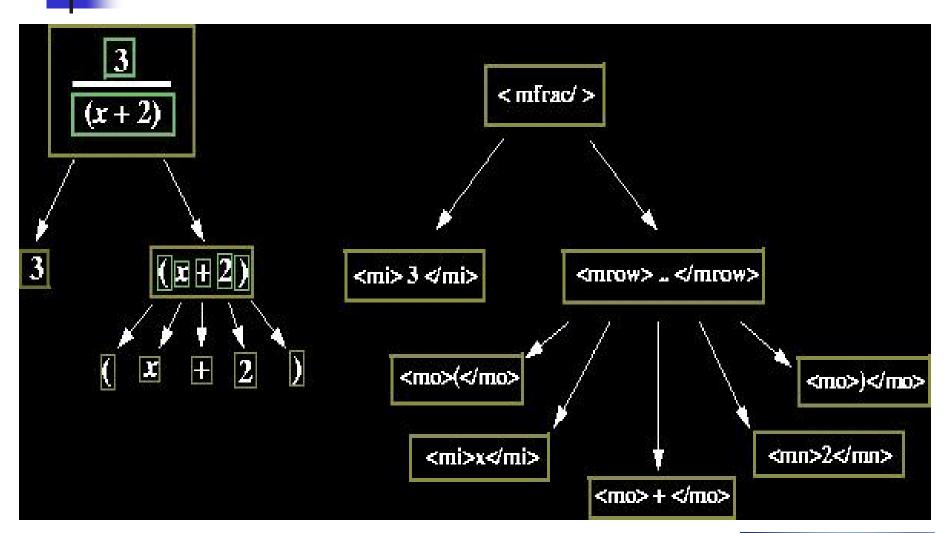
- as a software development tool
 - ANT -- XML-based build configuration file (Java applications)
 - beanML -- language specifying composition and state of a Java-bean based application. Processing a BML script results in a running application configured as described in the script.
 - use XML as a tool for managing data inside an application
 - Extract data from databases and store in intermediate XML "object"
 - Useful for application development (sometimes!)

Distributed apps

- distributed application, data delivery, Web services
 - Financial information exchange
 - FpML, FinXML, OFX/IFX, FixML, GOLD, XBRL, SwiftML
 - Directory services metadata
 - dirXML, DSML (Directory Services Markup Language),
 - Other business transactions
 - FRML (first retail markup language), ebXML (generic bu siness)
 - Control of machine-machine applications
 - XML-RPC, SOAP
 - Brokering of Web "Services"
 - Biztalk, UDDI, ebXML

The others apps

- Privacy
 - P3P(The Platform for Privacy Preferences)
 1.0 16 April 2002
 - A P3P Preference Exchange Language 1.0 (APPEL1.0) - 15 April 2002(WD)
- Digital right
 - XrML(eXtensible rights Markup Language)


MathML

- XML application for mathematical equations
- helps both the mathematicians and the theoretical physicists to publish and do research on the web
- Able to record both content and presentation
- Not directly supported (yet) by popular browsers
- Not meant for authoring directly
- Status
 - MathML 1.01 –7 July 1999
 - MathML 2.0 –21 Feb 2001

Math Markup Language

Fractions

$$\frac{x+1}{n+1}$$

Radicals

$$\sqrt{x+1}$$

Grouping Symbols

$$\sin\left(\frac{x-1}{2}\right)$$

Complex Expressions

$$\int_0^\infty e^{-\frac{x^2}{2}} \, \mathrm{d}x = \sqrt{\frac{\pi}{2}}$$

Why MathML? Universal!

- Computer Algebra Systems
 - Mathematica, Maple, REDUCE
- TeX
 - □begin{mathml}
 - □end{mathml}
- Web Browsers
 - Netscape, MS Explorer, Amaya, Mozilla, ICE

MathML Elements

Presentation

 $\sin(2x)$ <math> <apply> <sin/> <apply> <times/> <cn> 2 </cn> <ci> x </ci> </apply> </apply>

Content

Interface

MathML Tags: Presentation

- Used of Attr, font, color, fontsize, fontweight, background
- Numbers, Identifier and Operators
 - ⁢(⁢), &Invisibla Comma;(⁣), ⁡(⁡)
- Display Function and Marks
 - Square root, fraction number, sup, sub
- Fence, Phantoms
 - (x2, x3)
- Tables

4

MathML Tags: Presentation

Tokens:

```
mn -- numeralsmi -- variables, symbolconstants, identifiersmo -- operators, parens.
```

- Grouping:mrow mfence
- Special Functions:msup msqrt mfrac

```
<math>
<mrow>
<mi> sin </mi>
 <mo>&ApplyFunction;</mo>
 <mrow>
  < mo > ( </mo >
  \langle mn \rangle 2 \langle mn \rangle
  <mo>&InvisibleTimes;</mo>
  \langle mi \rangle \times \langle mi \rangle
  < mo > ) </ mo >
 </mrow>
</mrow>
```


MathML Tags: Content

- Prefix Notation
- <ci> and <cn> Tags
 - x+4 x
 - x identifier: <ci>, + operator, 4 number <cn>
- Basic Functions
- Relations and Declarations

MathML Tags: Content

- Calculus
 - differential:<diff/>, integral: <int/>
- Advanced Data Types
 - <set>, t>, <vector>, <matrix>
- Additional Function & content Attribute
 - <log/>, <sin/>, <cos/>, <tan/>,
 <median/>, <var/>
 - Attribute: type, definitionURI

MathML Tags: Content

Tokens:

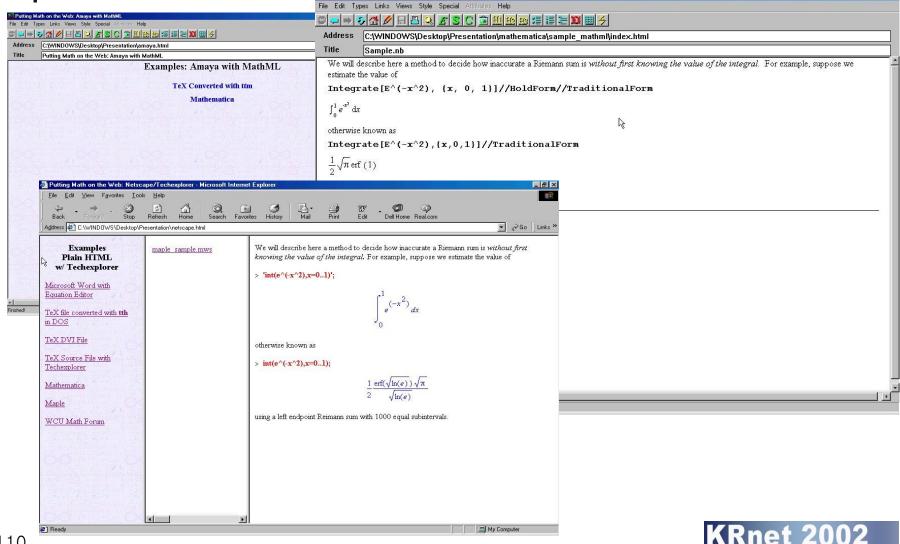
cn -- numerals

ci -- variables, symbols, identifiers

Operations

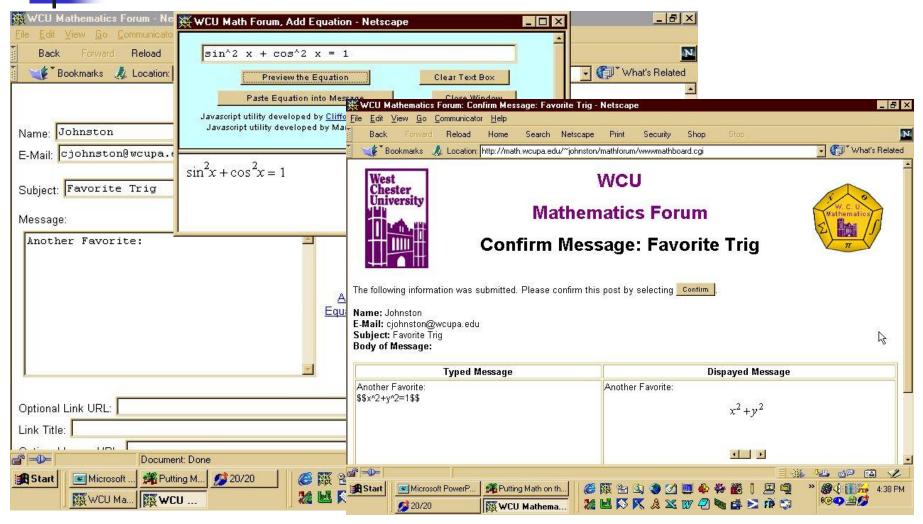
```
<math>
 <apply>
   <sin/>
   <apply>
     <times/>
     \langle cn \rangle 2 \langle cn \rangle
     <ci> x </ci>
   </apply>
  </apply>
```


Viewers


- Techexplorer -- browser plug-in
- WebEQ -- browser plug-in, java appl.
- Amaya
- Mozilla
- IE 5.5 Behaviors

Evaluation

- Mathematica (version 4.1)
 - presentation
- Maple
- REDUCE
 - presentation and content



- Output
 - WebEQ
 - Amaya
 - EZMath
 - TtM
 - Mathematica
 - Maple
 - Suzuki Demo

- Creating Pages
 - TtM
 - LaTeX2MathML
 - WebEQ Page Wizard
 - Plain2MathML
 - WCU Math Forum
 - MakeMathML

SVG (Scalable Vector Graphics)

Problems with Current Web Graphics

- Main formats
 - gif, png, jpeg
 - Fixed resolution images at pixel level
- Binary format
 - Contents is not searchable
 - Neither ideal for humans nor for search engines
 - No or few metadata
 - Limited animation possibilities
 - Difficult to "combine" with other content

SVG - A New Common Solution

- SVG (Scalable Vector Graphics)
 - All the major players participated
 - PGML (Precision Graphics Markup) Adobe
 - VML (Vector Markup Language) Microsoft

Status

- Under development since 1998
- Version 1.0 Recommendation Sep, 2001
- Version1.1 Candidate Recommendation Aprial 2002
- Supported by
 - Adobe Plug-in Version 3.0 Nov 2001
 - IBM Plug-in
 - Microsoft Internet Explorer, Office XP
 - Macromedia Flash
 - Apple Quicktime, Corel

- SVG is a vector graphics format
 - Resolution independent
- Defined in XML
 - Searchable
 - Metadata can be added
 - Can be combined with other XML infrastructure
- Animation facilities
 - Borrowed from multimedia presentation community
 - Direct access to DOM(Domain Object Model) from scripts
- Hyperlinking
 - Every graphics element can be an active hyperlink

Vector Graphics Format

- Objects
 - Paths(vector graphic shapes)
 - Images
 - Text
- Operations
 - Grouping, styling
 - Transformations(nested), compositing
 - Clipping paths, alpha masks
 - Filter effects
 - Template objects
 - Declarative animations
 - Full embedded scripting

Interactive & Dynamic Objects

- Animations can be defined and triggered
 - Scripted animations
 - Access to SVG Document Object Model (DOM)
 - Rich set of event handlers
 - ECMAScript
 - JavaScript
 - Visual Basic
 - Declarative animations
 - Embed SVG animation elements

SVG features

Plain text format

- SVG files can be read and modified by a range of tools
- Files are smaller and more compressible than comparable JPEG or GIF images

Scalable

- Unlike bitmapped GIF and JPEG formats, SVG is a vector format
- SVG images can be printed with high quality at any resolution
- Without "jaggies" you see when printing bitmapped images

Zoomable

- You can zoom in on any portion of an SVG image and not see any degradation
- You can search for specific text strings, like city names in a map

SVG features

- Scripting and animation
 - SVG enables dynamic and interactive graphics far more sophisticated than bitmapped or even Flash™ images
- Works with Java™ technology
 - SVG complements Java[™] technologies' high end graphics engine
 - Java 2D API
 - Graphics2D SVG Generator
- Open standard
 - SVG is an open recommendation developed by a crossindustry consortium
 - Unlike some other graphics formats (e.g. Flash), SVG is not proprietary

Potential Impact

- Potentially huge impact
 - Common Web format
 - Common typesetting format
- Common format for
 - Web browsers
 - Typesetting tools
 - Publishing tools
- Potentially replaces
 - HTML, DHTML (all version including dynamic)
 - PostScript, PDF
 - PNG, GIF
 - RTF
 - Flash
 - Many others

SVG advantages

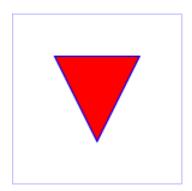
- Compatibility with other mediums such as wireless devices
- Scalable Server Solutions
- Small file sizes for faster Web page downloads
- Unlimited color and font choices
- Zoomable graphics and images
- Scripting control for custom interactive events and animation
- Clean, crisp, high-resolution printing from Web browsers
- Bitmap-style filter effects for high-impact graphics
- Text-based format easily integrates with other Web technologies
- Built in International Language Support
- Reduced Maintenance Costs
- Easily Updated
- Rich Multimedia Capabilities

SVG Document structure

- Syntax
 - Hierarchical XML tags
 - Case sensitive
- Document structure
 - XML version tag
 - SVG DTD tag
 - SVG tag define size and namespace

```
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
    "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="4cm"
    xmlns="http://www.w3.org/2000/svg">
    "graphics elements"
</svg>
```


- Paths represent the outline of a shape
 - Filled, stroked, used as a clipping path
 - Any combination of the three
- Concepts
 - Current point (pen location)
 - Dragging pen
 - Open, closed paths
- Just like PostScript and PDF

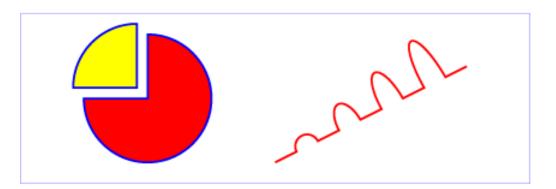


Path command

- Attributes
 - d, fill, stroke, stroke-width
- M 100 100
 - Absolute move to position(100,100)
- - Absolute line to position (300,100)
- Z
 - Close path
- Examples

```
<path
d="M 100 100 L 300 100 L 200 300 z"
fill="red"
stroke="blue"
stroke-width="3"/>
```


Coordinate system and units


- The initial coordinate system
 - Origin at the top/left corner
 - X-axis pointing to the right
 - Y-axis pointing down
- The initial user coordinate system has one user unit equal to the parent(implicit or explicit)user agent's "pixel"

Arc example

```
<path d="M300,200"><path d="M300,200"></par>
    h-150
    a150,150 0 1,0 150,-150 z"
    fill="red" stroke="blue" stroke-width="5" />
<path d="M275,175"><path d="M275,175"></par>
   v-150
   a150,150 0 0,0 -150,150 z"
   fill="yellow" stroke="blue" stroke-width="5" />
<path d="M600,350</pre>
    I 50,-25 a25,25 -30 0,1 50,-25
    I 50,-25 a25,50 -30 0,1 50,-25
    I 50,-25 a25,75 -30 0,1 50,-25
    I 50,-25 a25,100 -30 0,1 50,-25
    150,-25"
fill="none"
stroke="red" stroke-width="5" />
```



```
<polyline class="Connect" points="100,200 100,100" />
 <polyline class="Connect" points="250,100 250,200" />
 <polyline class="Connect" points="250,200 250,300" />
 <polyline class="Connect" points="400,300 400,200" />
 <path class="SamplePath" d="M100,200 C100,100 250,100 250,200</pre>
                          S400,300 400,200" />
 <circle class="EndPoint" cx="100" cy="200" r="10" />
                                                            M100,200 C100,100 250,100 250,200
 <circle class="EndPoint" cx="250" cy="200" r="10" />
 <circle class="EndPoint" cx="400" cy="200" r="10" />
 <circle class="CtlPoint" cx="100" cy="100" r="10" />
 <circle class="CtlPoint" cx="250" cy="100" r="10" />
                                                                     S400,300 400,200
 <circle class="CtlPoint" cx="400" cy="300" r="10" />
 <circle class="AutoCtlPoint" cx="250" cy="300" r="9" />
 <text class="Label" x="25" y="70">M100,200 C100,100 250,100
250,200</text>
 <text class="Label" x="325" y="350"
     style="text-anchor:middle">S400,300 400,200</text>
```


Basic shapes:rect

Attribute

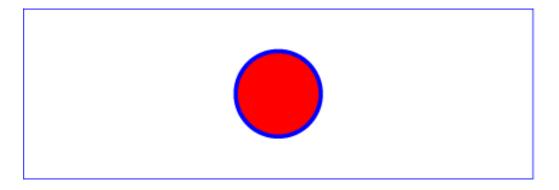
x, y, width, height, fill, stroke, stroke-width, rx, ry

Example

```
<rect x="100" y="100" width="400" height="200" rx="50" fill="green" />
```

```
<g transform="translate(700 210) rotate(-30)">
  <rect x="0" y="0" width="400" height="200" rx="50"</pre>
```

fill="none" stroke="purple" stroke-width="30" />

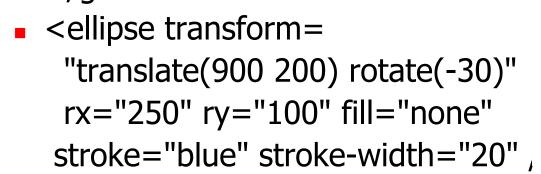

Basic shapes:circle

Attribute

cx, cy, r, fill, stroke, stroke-width

Example

```
<rect x="1" y="1" width="1198" height="398" fill="none" stroke="blue" stroke-width="2"/> <circle cx="600" cy="200" r="100" fill="red" stroke="blue" stroke-width="10" />
```

Basic shapes:ellipse

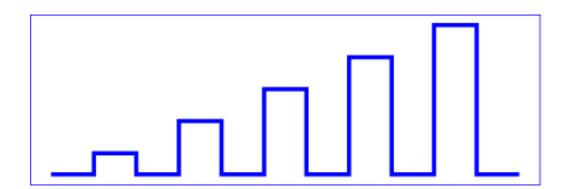
Attribute

cx, cy, rx, ry, fill, stroke, stroke-width

Example

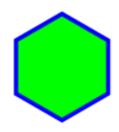
Basic shapes:line

- Attribute
 - x1, y1, x2, y2,stroke-width
- Example



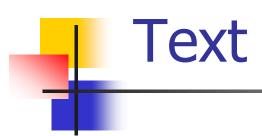
Basic shapes:polyline

- Attribute
 - points, fill, stroke, stroke-width
- Example
 - <polyline fill="none" stroke="blue" stroke-width="10" points="50,375 150,375 150,325 250,325 250,375 350,375 350,250 450,250 450,375 550,375 550,175 650,175 650,375 750,375 750,100 850,100 850,375 950,375 950,25 1050,25 1050,375 1150,375" />



Basic shapes:polygon

- Attribute
 - points, fill, stroke, stroke-width
- Example
 - <polygon fill="red" stroke="blue" stroke-width="10" points="350, 75 379,161 469,161 397,215 423, 301 350,250 277,301 303,215 231, 161 321,161" />
 - <polygon fill="lime" stroke="blue" stroke-width="10" points="850,75 958,137.5 958,262.5 850,325 742, 262.6 742,137.5" />



- A string of text at a given coordinate
- Tspan define a subspan for changing style
- Just like paths and shapes, text is subject to
 - Coordinate system transformations
 - Painting
 - Clipping
 - Masking

- Attribute
 - x, y, font-family, font, font-weight, fill
- Example
 - <text x="250" y="150" font-family="Verdana" font-size="55" fill="blue" > Welcome! KRnet 2002
 - </text>

Welcome! KRnet 2002

Text:tspan

- Within a 'text' element
- can be adjusted with absolute or relative coordinate values
 - Text
 - font properties
 - current text position

Text:tspan

Attribute

dx, dy, font-family, font, font-weight, fill

Example

You are **not** a banana.

But you

are

a peach!

Cute and

fuzzy

Text decoration

- describes decorations that are added to the text of an element.
- Some viewers(Conforming SVG Viewers) are not required to support the blink value.
 - Value: none | [underline || overline || linethrough || blink] | inherit
 - Initial: none
 - Applies to: text content elements

Text decoration

Example

```
<g font-size="60" fill="blue" stroke="red" stroke-width="1" >
<text x="100" y="75">Normal text</text>
<text x="100" y="165" text-decoration="line-through" >Text with line-
  through</text>
<text x="100" y="255" text-decoration="underline" >Underlined text</text>
<text x="100" y="345" text-decoration="underline" >
<tspan>One </tspan>
<tspan fill="yellow" stroke="purple" >word </tspan>
<tspan fill="yellow" stroke="black" >has </tspan>
<tspan fill="yellow" stroke="darkgreen" text-decoration="underline" >different
   </tspan>
<tspan fill="y€
                 Normal text
</text>
                 Text with line-through
</q>
                 Underlined text
                 One word has different underlining
```


- textPath element within text to place text along a path
- Example

```
<defs>
<path id="MyPath" d="M 100 200 C 200 100 300 0 400 100 C</p>
  500 200 600 300 700 200 C 800 100 900 100 900 100" />
</defs>
<use xlink:href="#MyPath" fill="none" stroke="red" />
<text font-family="Verdana" font-size="42.5" fill="blue" >
  <textPath xlink:href="#MyPath">
   We go up, then we go down, then up again
  </textPath>
                We go up, they
</text>
```


Scripting:Script

- A 'script' element is equivalent to the 'script' element in HTML
- the place for scripts (e.g., ECMAScript). Any functions defined within any 'script' element have a "global" scope across the entire current document.

Scripting:Script

Exmaple

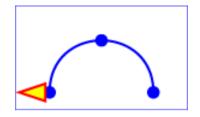
```
<script type="text/ecmascript"> <![CDATA[
  function circle_click(evt)
     var circle = evt.target;
     var currentRadius = circle.getAttribute("r");
     if (currentRadius == 100)
         circle.setAttribute("r", currentRadius*2);
     else
         circle.setAttribute("r", currentRadius*0.5);
]]> </script>
<circle onclick="circle_click(evt)" cx="300" cy="225" r="100"</pre>
  fill="red"/>
```

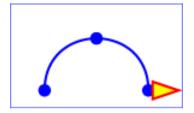

Animation

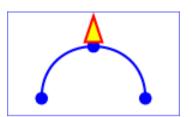
- SVG supports the ability to change vector graphics over time.
- Using SVG's <u>animation elements</u>
 - define motion paths, fade-in or fade-out effects, and objects that grow, shrink, spin or change color.
- designed to allow future versions of SMIL

Animation

- animate element
 - allows scalar attributes and properties to be assigned different values over time
- animateMotion element
 - moves an element along a motion path
- animateColor element
 - modifies the color value of particular attributes or properties over time
- animateTransform element
 - modifies one of SVG's transformation attributes over time, such as the transform attribute




Animation example


Example

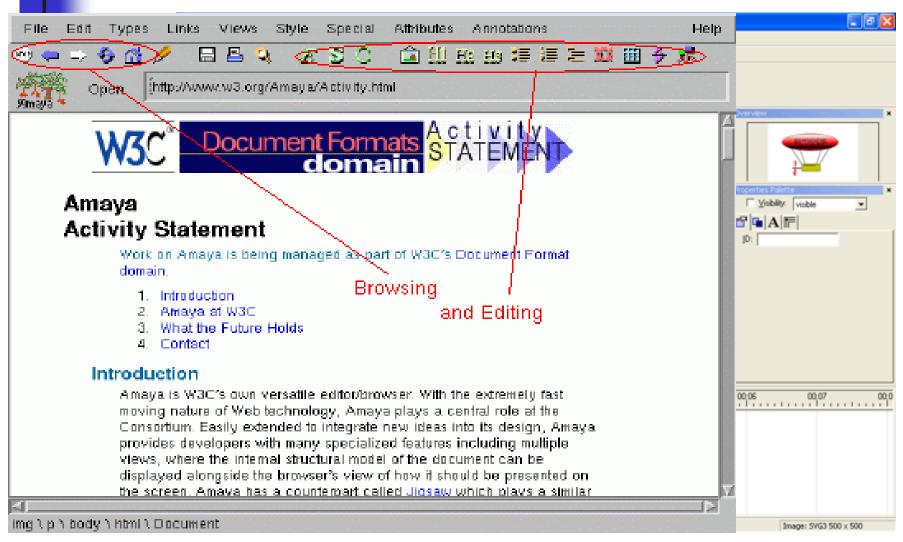
<!-- Define the motion path animation -->

<animateMotion dur="6s" repeatCount="indefinite" path="M100,250 C
100,50 400,50 400,250" rotate="auto" /> </path>



- SVG Viewers
 - Adobe SVG Viewer
 - Browser Plug-in
 - Apache Batik SVG browser
 - based on Java2
 - Bitflash SdVG viewer
 - subset of SVG suitable for mobile devices
 - CSIRO Pocket SVG Viewer
 - low memory footprint
 - For Pocket PC

SVG Tools


SVG Editor

- W3C Amaya
 - browser/editor for SVG and for mixed namespace XML, XHTML, SVG, and MathML
- JASC WebDraw
 - WYSIWYG visual editing
 - both import and export of SVG,
- various authors Sodipodi
 - small vector based drawing program
 - Both vector and bitmap objects can be arbitrarily transformed

SVG Tools

SVG Tools

- SVG Convertor
 - Appligent PDFML Publisher
 - Converts from SVG to PDF
 - server-side SVG converter
 - Celinea CR2V
 - Input formats are BMP, TIFF, PNG, JPEG and GIF. CR2V
 - Gardos Software gsDXF2SVG.dll
 - ActiveX DLL that converts AutoCAD DXF files to SVG
 - Oliver Dietzel JPEG to SVG encoder
 - convert JPEG files to SVG outlines

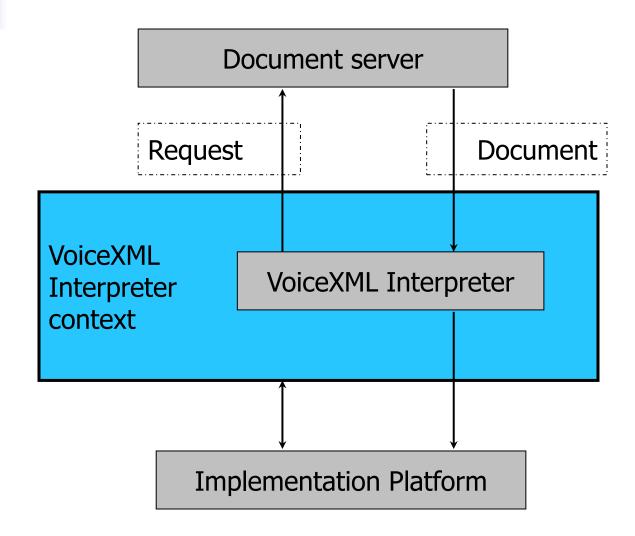
- Language for specifying voice dialogs
- Extension of XML
- Designed to interact with web-based applications
- Integration of Multiple Speech and Telephony Related Technologies
 - Automated Speech Recognition (ASR)
 - Text-to-Speech Synthesis (TTS)
 - DTMF
 - Interactive Voice Response (IVR)

Goals & Scope

Goals

- Full power of web development and content delivery to voice response application
- Separation from low-level programming and resource management

Scope


- Synchronized speech output
- Output audio file
- Recognition of spoken, DTMF input
- Recoding of spoken input
- Control of dialog flow
- Telephony features such as call transfer and disconnect

Architecture Model

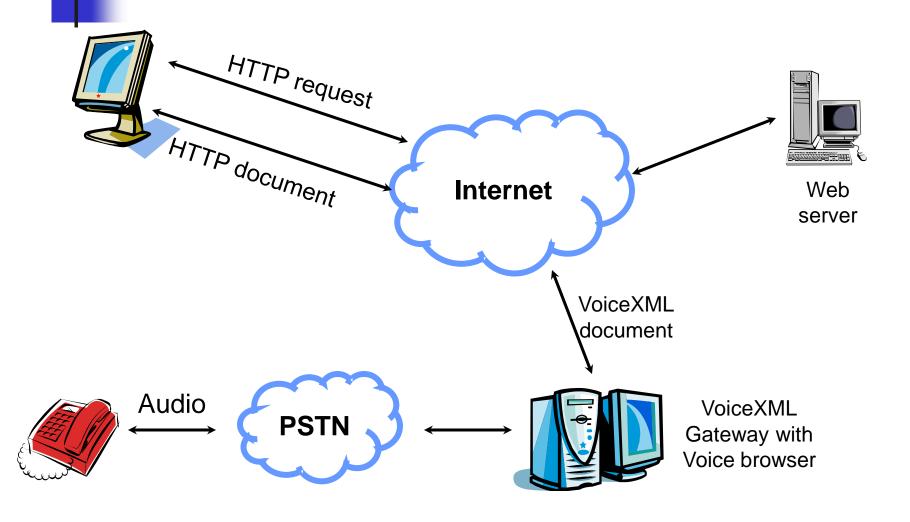
Architecture Model

Document server

 Processes requests received from the VoiceXML Interpreter and responds with VoiceXML documents.

VoiceXML Interpreter

 Interprets the VoiceXML documents it receives from the document server.


Implementation platform

- Controlled by the VoiceXML Interpreter context and VoiceXML Interpreter
- the implementation platform generates events in response to user actions and system events
- The VoiceXML Interpreter context and VoiceXML Interpreter then handles the events.

Gateway within network

- VoiceXML document
 - Conversational finite state machine
- Dialog and Subdialog
 - Form
 - Define an interaction that collections values from a set of field item variable
 - Menus
 - Present the user with choice of options
 - Subdialog
 - Mechanism fo invoking a new interaction and returning to the original form

Session

 begins once the user begins to interact with a VoiceXML document.

Application

- a collection of VoiceXML documents.
- All the documents in an application share the same application root document

Grammars

- specifies a list of permissible vocabulary for the user
- Each dialog has one or more speech and/or grammars associated with it.

Events

- thrown by the VoiceXML platform for a number of reasons
- such as when a user does not respond to an input, doesn't respond correctly, requests help, etc

Link

- specifies a transition that is common to all dialogs in the scope of the link
- Support mixed intiative
- When a user input matches the link's grammar, control transfers to the link's destination

Document structure

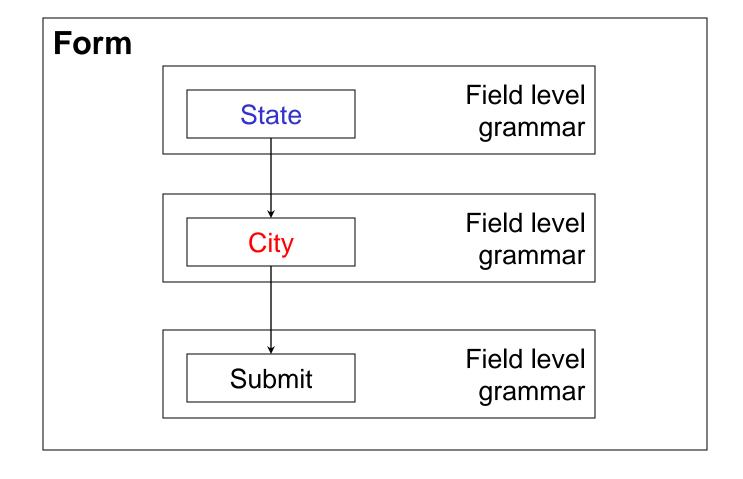
- Execution within document
- Execution a multi-document application
 - Root document and subdocument
 - In case where you want multiple documents to work together as one application
 - Benefits
 - Information sharing
 - Use can always interact with common forms, links, menus
- Subdialog
 - Mechanism for decomposing complex sequences of dialogs to create reusable components

- Documents are composed of dialogs
- Two top-level dialog elements
 - Forms: <form>
 - Menus: <menu>
- Extra top-level elements

<meta/>	Metadata items in name/value pairs
<var></var>	Variable declaration
<script></td><td>ECMAScript client side scripting</td></tr><tr><td><catch></td><td>Catch an event</td></tr><tr><td></td><td>Transition common to all dialogs in scope</td></tr></tbody></table></script>	

- Discrete dialog elements
 - Denoted by <form> tag
 - Optional "id" attribute to specify name
 - Responsible for executing some part of the dialog
- Forms contain various elements
 - Elements perform tasks required by form
 - Several, among which those known as "form items"

```
<form id="welcome">
..elements..
</form>
```

Form Types

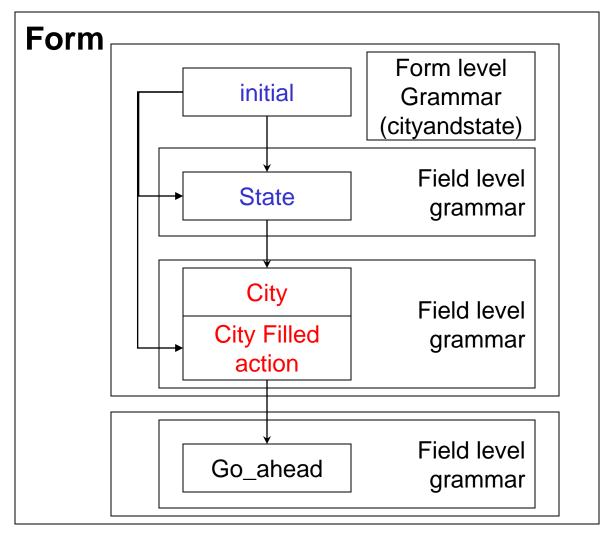
- Directed Forms
 - Form items are executed exactly once in sequential order
 - Implement a computer-directed interaction

Form Types(Directed Form)

#재대학교 PAI CHAI UNIVERSITY

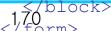
Form Types(Directed Form)

```
<form id="weather info">
 <block> Welcome to the weather information service! </block>
 <field name="state">
   ompt> What state? 
   <grammar src="state.gram" type="application/x-jsgf"/>
   <catch event="help">
     Please speak the state for which you want the weather.
   </catch>
 </field>
 <field name="city">
   ompt> What city? 
   <grammar src="city.gram" type="application/x-jsgf"/>
   <help>
     Please speak the city for which you want the weather.
   </help>
 </field>
 <block>
   <submit next="/servlet/weather" namelist="city state"/>
</block>
</form>
```

Form Types

- Mixed Initiative Forms
 - Both the computer and the human direct the conversation
 - Has one or more <initial> form items
 - Has one or more form-level grammars
 - Fields can be filled in any order
 - More than one fields can be filled by a single utterance




```
<form id="weather info">
  <grammar src="state.gram"</pre>
           type="application/x-jsqf"/>
  <block> Welcome to the weather
          information service!
</block>
  <initial name="start">
    prompt>For what city and state do
       you want the weather? </prompt>
    <noinput>
      <reprompt/>
      <assign name="start"
expr="true"/>
    </noinput>
  </initial>
  <field name="state">
     . . . Field Elements . . .
  </field>
  <field name="city">
     . . . Field Elements . . .
  </field>
  <block>
    <submit next="/servlet/weather"</pre>
            namelist="city state" />
```

- Welcome to the weather information service. For what city and state do you want the weather?
- (silence)
- Welcome to the weather...


```
<form id="weather info">
  . . . Previous form items . . .
  <field name="state">
    ompt> What state? 
    <help> Please speak the state for
   which you want the weather. </help>
  </field>
  <field name="city">
    cprompt> Say the city in
        <value expr="state"/>
      for which you want the weather.
    </prompt>
    <help> Please speak the city for
      which you want the weather.
    </help>
    <filled>
      . . . Why use this? . . .
    </filled>
  </field>
  <block>
    <submit next="/servlet/weather"</pre>
            namelist="city state" />
  </block>
</form>
```

- What state?
- Help
- Please speak the state for which you want the weather
- Washington
- Say the city in Washington for which you want the weather
- Seattle
- (retrieve info from server)


```
<form id="weather info">
  . . . Previous form items . . .
  <initial name="start">
    cprompt> For what city and state do
      you want the weather? </prompt>
  </initial>
      . . . "state" field . . .
  <field name="city">
    ompt> Say the city in <value</pre>
expr="state"/>
    for which you want the weather.
    </prompt>
    <filled>
    <if cond="city='LA'&&
state==undefined">
        <assign name="state"
                expr="'California'" />
      </if>
    </filled>
  </field>
  <block>
    <submit next="/servlet/weather"</pre>
            namelist="city state" />
  </block>
</form>
```

- ...For what city and state do you want the weather?
- LA
- (matches with "city" field and fills "state" field as well)

Forms and Fields

```
<field name="op">
  prompt>
    Choose add, subtract, multiply
or divide.
  </prompt>
  <qrammar>
    [ add subtract multiply divide ]
  </grammar>
  <help>
    Please say what you want to do.
    <reprompt/>
  </help>
  <filled>
    ompt>
      Okay, let's<value expr="op" />
      two numbers.
    </prompt>
  </filled>
</field>
```

- <filled>
 - Action to take once the field is "filled in"
 - Implicit confirmation
- <help>
 - Catches the "help" event
- <reprompt>
 - Returns dialog to the first prompt in the field

Features

- Grammars: specifies a set of utterance that a user may speak
 - Supporting any grammars
- Speech markup
 - Specifies characteristics of words
- Events handling
- Resource fetching
- Object
 - Platform dependent object call

Application

Voice portals

 Just like Web portals, voice portals can be used to provide personalized services to access information like stock quotes, weather, restaurant listings, news, etc.

Location-based services

 You can receive targeted information specific to the location you are dialing from. Applications use the telephone number you are dialing from

Voice alerts (such as for advertising)

 VoiceXML can be used to send targeted alerts to a user. The user would sign up to receive special alerts informing him of upcoming events.

Commerce

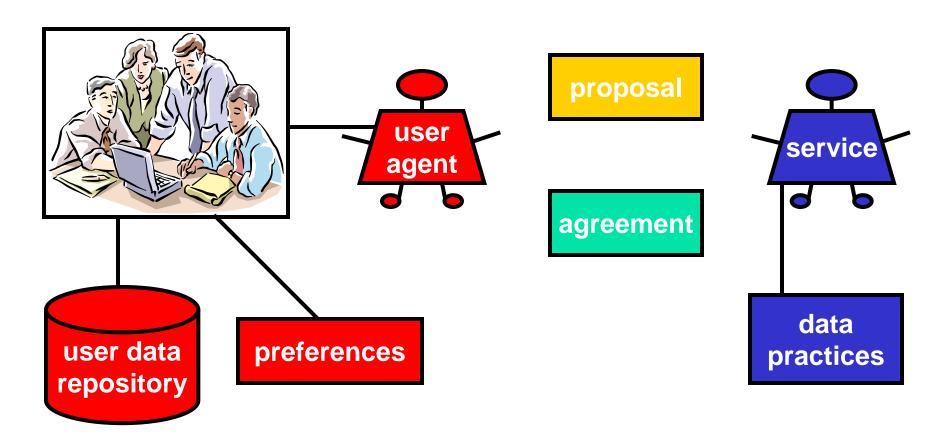
 VoiceXML can be used to implement applications that allow users to purchase over the phone. Because voice gives you less information than graphics, specific products that don't need a lot of description (such as tickets, CDs, office supplies, etc.) work well.

Voice XML Tools

- BeVocal Café
 - eb-based VoiceXML development environment providing a carrier-grade VoiceXML 2.0 (and 1.0) interpreter
- Conita
 - based upon Open VXI
- Motorola has the Mobile Application Development Toolkit (MADK)
 - supports VoiceXML 1.0 (as well as WML and VoxML
- SpeechWorks
 - VoiceXML 2.0 support to any platform

P3P (Platform for Privacy Preferences)

P3P Introduction


- Individual privacy protection standard technical platform that develop in W3C
- Series standard presentation about data processing that consist in website
- Information according to information open level that read and establish information about relevant web site's privacy selectively offer
- Suppose that need to supply personal information according to user's situation unlike an encryption tool that control personal information transmission in principle
- Whether must supply personal information in some time, user selects and gives help to decide.
- Participants
 - Microsoft, AT&T, Hewlett Packard, IBM, Nokia, etc.

Basic P3P Concepts

A Simple P3P Conversation

- User agent: Get index.html
- Service: Here is my P3P proposal I collect click-<u>stream data</u> and <u>computer information for web site</u> and <u>system administration</u> and <u>customization of site</u>
- User agent: OK, I accept your proposal
- Service: Here is index.html

P3P is a work in progress

- These slides are based on the status of P3P as of May 10 2000
- Public feedback solicited November 1999 through April 2000, the P3P Last Call period
- Changes made to address feedback received during the last call period
- Additional changes may be made as a result of implementation experience
- For the latest P3P specification see http://www.w3.org/TR/P3P/

Original idea behind P3P

- A framework for automated privacy discussions
 - Web sites disclose their privacy practices in standard machine-readable formats
 - Web browsers automatically retrieve P3P privacy policies and compare them to users' privacy preferences
 - Sites and browsers can then negotiate about privacy terms

P3P1.0 – A first step

- Offers an easy way for web sites to communicate about their privacy policies in a standard machine-readable format
 - Can be deployed using existing web servers
- This will enable the development of tools that:
 - Provide snapshots of sites' policies
 - Compare policies with user preferences
 - Alert and advise the user

P3P 1.0 specification defines

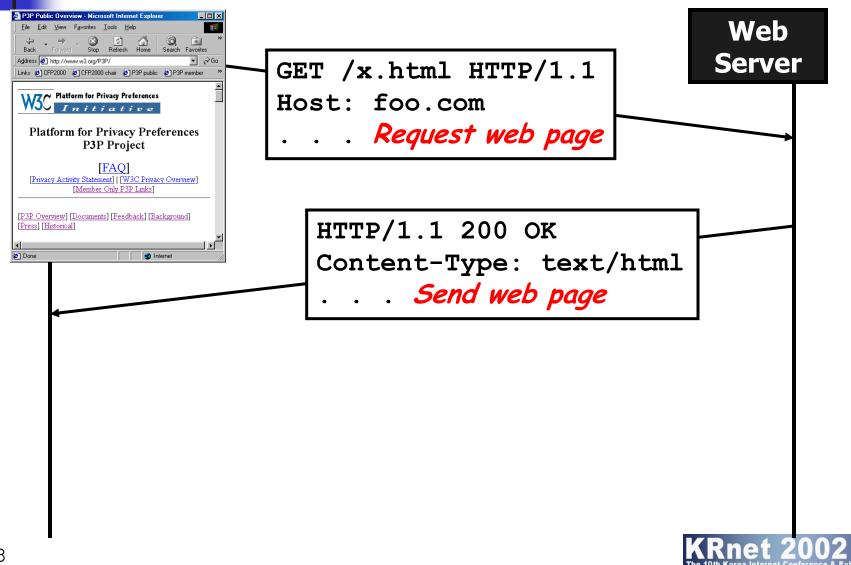
- A standard schema for data a Web site may wish to collect (base data schema)
- A standard set of uses, recipients, data categories, and other privacy disclosures
- An XML format for expressing a privacy policy
- A means of associating privacy policies with Web pages or sites
- A mechanism for transporting P3P policies over HTTP

Future versions of P3P

- Allow web sites to offer a choice of policies
 - P3P 1.0 supports only one policy per resource
- Allow for "negotiation" and explicit agreements to be reached between user agent and web site
 - P3P 1.0 policies are "take-it-or-leave-it"
- Allow for non-repudiation of agreements, signatures from third-party seal providers, etc.
 - P3P 1.0 offers no mechanism to prove that certain communication took place
- Facilitate automated data transfer
 - P3P 1.0 requires external mechanisms (e.g., automatic formfill) to transfer data

P3P is a partial solution

- P3P1.0 helps users understand privacy policies but is not a complete solution
- Seal programs and regulations
 - help ensure that sites comply with their policies
- Anonymity tools
 - reduce the amount of information revealed while browsing
- Encryption tools
 - secure data in transit and storage
- Laws and codes of practice
 - provide a base line level for acceptable policies

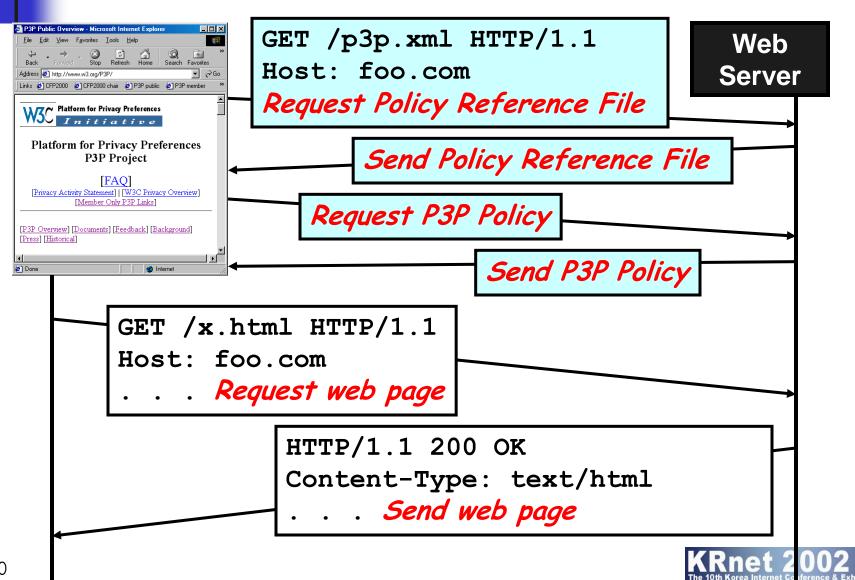


Implementing a P3P 1.0 server

- Formulate privacy policy
- Translate privacy policy into P3P format
- Place P3P policy on web site
 - One policy for entire site or multiple policies for different parts of the site
- Associate policy with web resources:
 - Place P3P policy reference file (which identifies location of relevant policy file) at well-known location on server;
 - Configure server to insert P3P header with link to P3P policy reference file; or
 - Insert link to P3P policy reference file in HTML content



A simple HTTP transaction



A simple HTTP transaction

Or using /p3p.xml file

The P3P vocabulary

- Who is collecting data?
- What data is collected?
- For <u>what purpose</u> will data be used?
- Is there an ability to <u>change preferences</u> about (opt-in or opt-out) of some data uses?
- Who are the data <u>recipients</u> (anyone beyond the data collector)?

- To what information does the data collector provide <u>access</u>?
- What is the data <u>retention</u> policy?
- How will <u>disputes</u> about the policy be resolved?
- Where is the <u>human-</u> <u>readable privacy</u> <u>policy</u>?

At CatalogExample, we care about your privacy. When you come to our site to look for an item, we will only use this information to improve our site and will not store it in an identifiable way.

CatalogExample is a licensee of the PrivacySealExample Program. ...

Questions regarding this statement should be directed to: CatalogExample 1-248-392-6753

When you browse through our site we collect:

The basic information about your computer and connection to make sure that we can get you the proper information and for security purposes

Aggregate information on what pages consumers access or visit to improve our site

We purge the browsing information that we collect regulalry

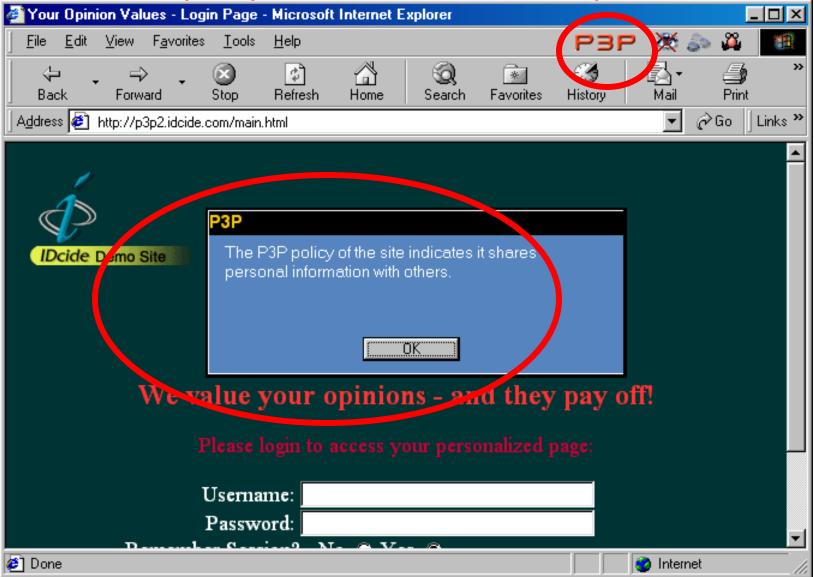
P3P/XML encoding

```
<POLICY xmlns=http://www.w3.org/2000/P3Pv1
  discuri="http://www.catalog.example.com/Privacy.html">
  <ENTITY><DATA-GROUP><DATA ref="#business.name">CatalogExample</DATA>
   <DATA ref="#business.contact-info.telecom.telephonenum.intcode">1</DATA>
   <DATA ref="#business.contact-info.telecom.telephonenum.loccode">
     248</DATA>
   <DATA ref="#business.contact-info.telecom.telephonenum.number">
     3926753</DATA>
  </DATA-GROUP></ENTITY>
  <DISPUTES-GROUP> <DISPUTES resolution-type="independent"</pre>
    service="http://www.PrivacySeal.example.org"
    short-description="PrivacySeal.exampleorg"
    <REMEDIES><correct/></REMEDIES>
    <IMG src="http://www.PrivacySeal.example.org/Logo.gif"/>
  </DISPUTES></DISPUTES-GROUP>
  <ACCESS><nonident/></ACCESS>
  <RETENTION><stated-purpose/></RETENTION>
      <DATA ref="#dynamic.clickstream.server"/>
      <DATA ref="#dynamic.http.useragent"/>
</POLICY>
```


P3P Demo implementations

- AT&T Privacy Minder
- AT&T P3P Proposal Generator
- ENC Privacy Information Management System
- IBM P3P Parser
- Microsoft Privacy Wizard
- NEC P3P for Perl
- NCR P3P user agent demo
- W3C P3P client prototype

http://www.w3.org/P3P/implementations


P3P enabled web sites

- www.aol.com
- www.att.com
- www.cdt.org
- www.engage.com
- www.hp.com
- www.ibm.com
- www.idcide.com

- www.microsoft.com
- www.pg.com
- www.ttuhsc.edu
- www.youpowered.com
- www.vineyard.net
- www.w3.org

Double clicking on the P3P icon indicates where the site's policy differs from the user's preferences

IDcide P3P Icons

Searching for a P3P policy

P3P policy is NOT acceptable

No P3P policy found

P3P policy is acceptable

PrivacyBank.Com

- An Infomediary Service
- Does not currently use P3P but could be adapted to use P3P
- A good example of an interface that might be suitable for a P3P user agent

http://www.privacybank.com

Back

Address 4

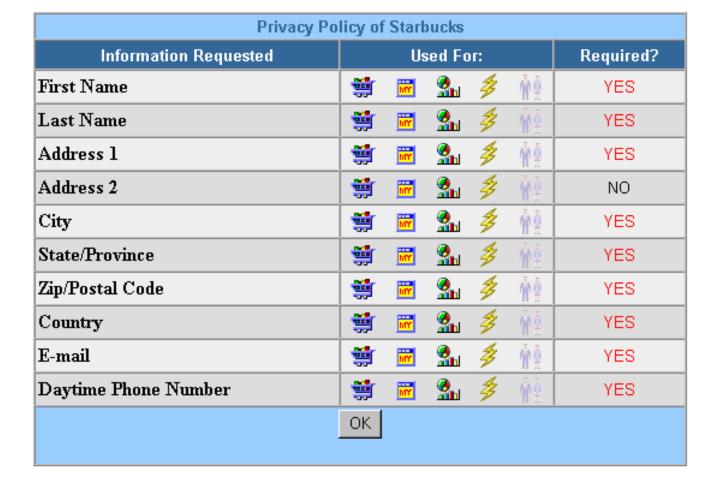
Links 🥰

The

coffee

brewing

* * *


PRODUC

coff

Full Policy Details - Microsoft Internet Explorer

Comments? Send mail to comments @privacybank.com

Copyright © 1998-1999 Millet Software, Inc.

Benefits and problems

Potential problems

- Data practices may not be privacy friendly
- Individuals may lower expectations to match marketplace choices
- May lead to more data disclosure

Benefits and problems

Potential benefits

- Increase users' knowledge of data practices
- Help enforce privacy directives
- Create new markets; lead to better choices
- Promote opt-in business models

Advantages of P3P

- Intuitive promotes a seamless browsing experiences while addressing privacy concerns
- Transparent makes privacy policies clear to web users
- Global developed with international diversity in mind
- End-to-End provides tools to more easily create policies and checks sites for privacy assurance seals
- Expandable future versions could support automatic negotiation of privacy agreements and digital signature-based authentication
- Available demos currently available

WML(Wireless Markup Language)

- An open, global standard that empowers monile users whit wireless devices to easily access and interact with information and services instantly
- A standard created to make accessing the internet as easy and convenient as using a cellular phone

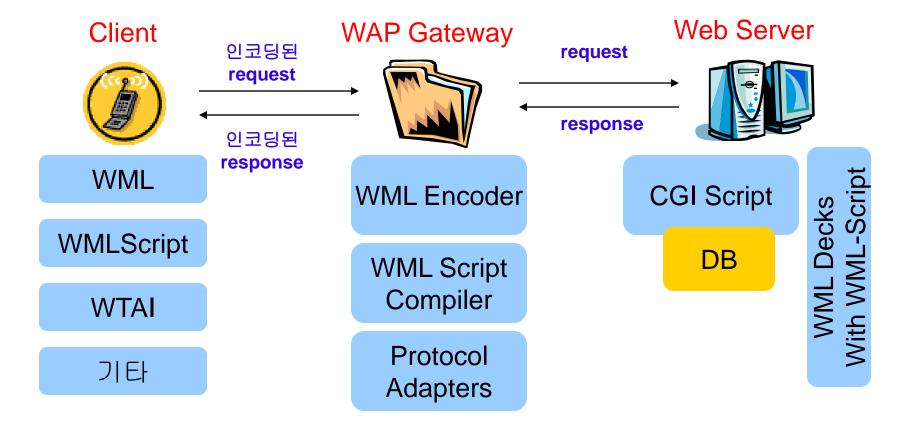
WAP Forum

Goals

- Ensure interoperability
- Foster growth of the wireless market
- Make accessing the internet portable and convenient

Objectives

- Create a grobal protocop specification to work across differing wireless network technoligies
- Submit specification for adoption by appropriate induatry and standard bodies
- Enable applications to scale across a variety of transport options and device types



WAP Architecture

WAP vs. WWW

HTML JavaScript

HTTP

TLS-SSL

TCP/IP UDP/IP

Wireless Application Protocol

Wireless Application Environment(WAE)

Session Layer(WSP)

Transaction Layer(WTP)

Security Layer(WTLS)

Transport Layer(WDP)

전송매체

SMS

USSD CSD

IS-136

CDMA C

CDPD

PDC-P

Other Service and

Application

ETC

WML Scope

Define:

- markup language based on XML in specifying content & user interface for narrowband devices
- (cellular phone, pager, PDA...)
- Constraints of small narrowband devices:
 - small display & limited user input facilities
 - narrowband network connection
 - limitted memory & conceptual resources

WML Scope

- Functional areas:
 - text presentation & layout
 - deck/card organizational metaphor:
 a WML deck = a collection of cards
 - inter-card navigation & linking: using fragment anchors to identify each WML card within a WML deck
 - string parameterization & state management: all decks can be parameterised using state model more efficient use of network resources

- The smallest unit of WML that is transmitted to a WAP device
- page information, much like Web page

- Document Prologue
 - xml declaration & document type declaration
 - it is an error to omit the prologue

```
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
   "http://www.wapforum.org/DTD/wml_1.1.xml">
```

- <head> element
 - info relating to the deck , including meta-data & access control elements

- <access> element
 - specify access control information for the entire deck
 - it is an error for a deck to contain more than one access element

```
<access
  domain="STRING" //valid partial or full domain name
  path="STRING" //valid relative or absolute path name
>
```


- <meta> element
 - generic meta-info(property names & values)
 relating to the WML deck

container of text & input elements

```
id="ID"
newcontext="true | false"
onenterbackward ="URL"
onenterforward = "URL"
ontimer ="URL"
ordered="true | false "
title =VDATA
>
```


Attributes

- id: card name
- newcontext: instructs the device to remove all context-specific variables, clear the history stack, and reset the device to a well-known state
- onenterbackward : result of
- onenterforward : result of <go>
- ontimer: to go if a <timer> element expires
- ordered: indicating that the card's content should be presented in a list format
- title: the label for bookmark

Styled Text

TAG	FONT CHARACTERISTIC
	Bold
<big></big>	Large
	Emphasize
<i>></i>	Italic
<small></small>	Small
	Strong enphasis
<u></u>	Underline

Content

Tables

```
<table</pre>
     align="STRING" //list of alignment
    designators,"L","C","R"
     columns="NUMBER"
     title ="VDATA" >
    <a>,<anchor>,<br>,FMTEXT,<img>,,TEXT
        Appointments
Date
                       Start/Stop
                   02/25 9:30-10:45A
                   03/03 4:45-6:00P
```


Content

Images

```
<image</pre>
     align = "top | middle | bottom"
     alt = "VDATA"
                                      Today's forecast:
     height = "LENGTH"
     hspace = "LENGTH"
     localsrc ="VDATA"
     src = "URL"
     vspace = "LENGTH"
     width = "LENGTH"
                                      Today's forecast:
/>
                                     Partly cloudy
```


<anchor> element

a short-form syntax

Timers

- provides mechanism for invoking a task after a certain period of time
- A card can have only one timer, and a <timer> can have only one task

- <option> element
 - single possible choice the user can make.

<select> element must contain one or more

<option>

```
<option
    onpick = "URL"
    title = "VDATA"
    value = "VDATA"
    TEXT, <onevent>
</option>
```


Data Entry

- <option> element
 - onpick: A URL to execute if this <option> is selected or deslected (only multiple option list)
 - title: the option's title, used when it is displayed
 - value: used when the user agent sets the select's name variable

- Multilevel Choices
 - <optgroup>element
 - define hierarchical relationships between <option> elements

- XrML eXtensible rights Markup Language
- Originates from Xerox PARC in 1994
- Digital contents to divide or use rights, involved conditions and obligations specification offer
- Contents identification, confidentiality, integrity support
- Many flexibles, customizable, extensible offer
- Data is offer in next time site : www.xrml.org
- ContentGuard's fundamental tool offer: language, parsers, interpreter

XrML advantage

- Aid Human's Knowledge Processing:
 - Conversion of XRML (including Rule Identification Language) to XML/HTML
- Aid Agent's Knowledge Processing against Web page
 - Triggering rule-based inferences in the agents, possibly from the Workflow Management System
- Maintain Consistency between Rule Base and Web page
 - Aid the extraction(semi-automatically) of rules from XML maintaining consistency between them

- Mathematical Precision no ambiguity
- Expressiveness advanced business models, life-cycle management, usage state tracking, pattern matching
- Well defined core and extensions architecture
 - Compact: Use of only those terms needed
 - Applications based on equality & pattern matching enable extensions without the need to upgrade
- Comprehensive Security
 - Entity authentication (Users, software, hardware, Digital Items, etc.)
 - Integrity and confidentiality of rights expressions
- Up-to-date Standards and Technologies

XrML Advanced Features

- Mechanisms for Enhanced Expressiveness
 - Variables (via ForAll and XmlPatternAbstract)
 - Rights Grouping (via GrantGroup)
 - Delegation (via DelegationControl)
 - Meta Rights (via Issue, Obtain, and Revoke)
 - "Attribute" Certificates (via PossessProperty)

XrML Evolution

XrML 2.0 (11/01) ContentGuard

- Support for More Business Models
- Enhanced security, flexibility & extensibility

XrML 1.2 (11/01) ContentGuard

Final Maintenance Release of 1.X

XrML 1.03 (8/00) ContentGuard

Enhancements added to increase flexibility

XrML 1.0 (4/00) ContentGuard

- Conversion to XML based language
- Additional Extensions

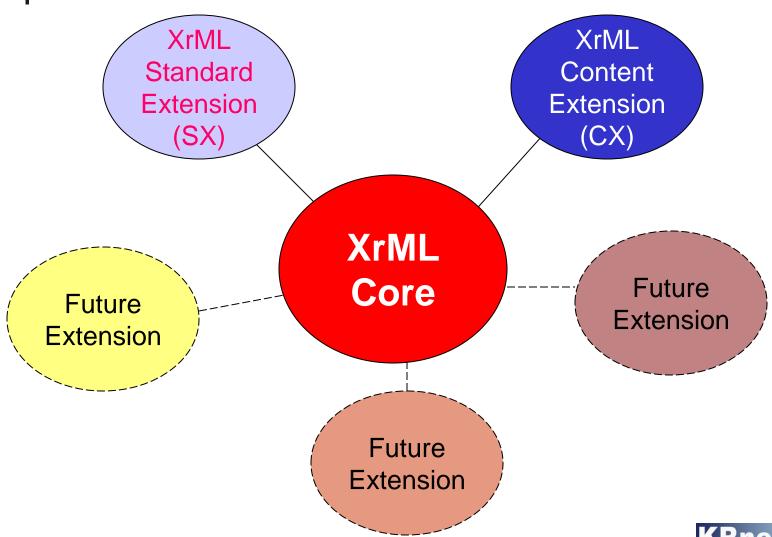
DPRL 2.0 ('97-'99) Xerox

© Enables specification of rights (fees, terms, and conditions) for digital works

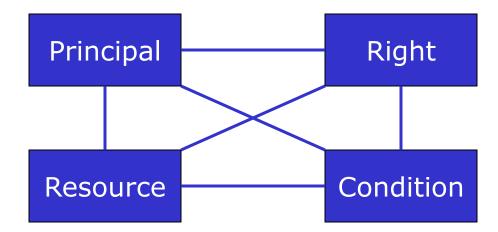
DPRL 1.0 ('94-'96) Xerox

Focus on machine enforceable rights

XrML Specification Configuration


- Primer : XrML Fundamental Concept
- XrML Core Schema: Description about core of XrML design and rescue
- Standard Extension Schema: XrML standard extension, extension about common type, element that is used in XrML use scenario
- Content Extension Schema: XrML Content Extension, right, conditions, Language extension to define type, element to describe metadata
- Appendices: index, glossary, list of reference

XrML Extensibility Architecture



XrML base feature

- Four Key Components
 - Principal
 - Right
 - Resource (Work, Service, Name, etc.)
 - Condition

- Granting Mechanisms
 - Grant
 - License

- XrML core
 - License, grant, principal, right, resource, condition

```
cense>
                                      Sample XrML
                      principal
 <grant>
    <keyHolder>
                       right
    <cx:print/>
    <cx:digitalWork>
                          resource
       <cx:locator>
    <nonSecureIndirect</pre>
URI="http://www.contentguard.com/sampleBook.spd"/>
       </cx:locator>
                          condition
   </cx:digitalWork>
   <validityInterval>
     <notAfter>2001-12-24T23:59:59
   </validityInterval>
 </grant>
</license>
```


Q&A